Prof. Jing Pan | Electrochemistry | Chemical Research Excellence Award
Professor at Yangzhou University in China.
🌟 Professor Pan Jing is a distinguished researcher at Yangzhou University, Jiangsu, China 🇨🇳. Her expertise lies in the properties and applications of micro/nanostructural magnetoelectricity, photoelectricity, and catalysis ⚡🔬. She focuses on materials such as ZnO, SnO₂, Graphene, and MoS₂, exploring their potential for photovoltaic applications, environmental improvement, and new energy solutions 🌍🔋. Through her pioneering work, she contributes to advancing sustainable technologies and innovative material applications, making a significant impact in the field of nanoscience and energy research 🚀📡.
🔍 Summary of Suitability:
Professor Pan Jing’s work in nanomaterials, magnetoelectricity, photoelectricity, and catalysis aligns well with the award’s criteria. Her pioneering studies on materials like ZnO, SnO₂, Graphene, and MoS₂ contribute to chemical research innovations in photovoltaics, energy solutions, and environmental sustainability 🌍⚡.
🎓 Education:
-
Ph.D. in Materials Science 🏅 – Specialized in nanomaterials and their applications.
-
Master’s Degree in Chemistry 🧪 – Focused on material properties and catalysis.
-
Bachelor’s Degree in Physics/Chemistry 📚 – Built a strong foundation in material sciences.
🏆 Experience:
-
Professor at Yangzhou University, Jiangsu, China 🎓 – Leading research in nanostructural magnetoelectricity, photoelectricity, and catalysis.
-
Research on ZnO, SnO₂, Graphene, and MoS₂ 🔬 – Exploring their applications in photovoltaics, environmental improvement, and new energy.
-
Contributor to Sustainable Technologies 🌍 – Innovating materials for cleaner energy and environmental advancements.
-
Mentor & Educator 👩🏫 – Guiding students and researchers in advanced material sciences.
Professional Development 🚀📖
🔬 Professor Pan Jing has dedicated her career to advancing nanomaterials research at Yangzhou University, Jiangsu, China 🇨🇳. She has conducted cutting-edge studies on ZnO, SnO₂, Graphene, and MoS₂, exploring their magnetoelectric, photoelectric, and catalytic properties ⚡🧪. Her work contributes to sustainable energy solutions, environmental enhancement, and photovoltaic advancements 🌍🔋. Actively engaged in scientific collaborations, academic mentoring, and interdisciplinary research, she fosters innovation in nanotechnology 🚀. Through publications, conferences, and educational leadership, she inspires the next generation of scientists, shaping the future of energy and materials science 📚🏆.
Professor Pan Jing focuses her research on nanomaterials and their multifunctional properties 🔬🌟. Her work explores the magnetoelectric, photoelectric, and catalytic behaviors of advanced materials like ZnO, SnO₂, Graphene, and MoS₂ ⚡🧪. These materials have transformative applications in photovoltaics, sustainable energy, and environmental remediation 🌍🔋. Her studies aim to enhance energy efficiency, develop eco-friendly technologies, and advance nano-enabled solutions 🚀. By integrating nanotechnology with renewable energy and environmental science, she contributes to cutting-edge advancements in material science, fostering innovation for a cleaner and more energy-efficient future 💡🏆.
Publication Top Notes:
1️⃣ High-efficient OER/ORR bifunctional electrocatalyst based on single transition-metal anchored Graphynes – R. Wang, W. Su, Z. Kang, S. Guo, J. Pan (📅2025) [0️⃣ citations] 📄 Applied Surface Science
2️⃣ Boosting oxygen evolution reaction by FeNi hydroxide-organic framework electrocatalyst toward alkaline water electrolyzer – Y. Chen, Q. Li, Y. Lin, J. Hu, X. Xu (📅2024) [1️⃣7️⃣ citations] 📄 Nature Communications
3️⃣ Enhanced oxygen evolution reaction activity on two-dimensional vdW ferromagnetic Cr₂Ge₂Te₆ through synergism between two active sites – Z. Kang, W. Su, Q. Li, J. Hu, J. Pan (📅2024) [0️⃣ citations] 📄 Physical Chemistry Chemical Physics
4️⃣ TM-doping modulated p-d orbital coupling to enhance the oxygen evolution performance of Ni₃S₂ – Q. Li, M. Zhang, R. Wang, J. Pan, H. Fu (📅2024) [0️⃣ citations] 📄 Nanoscale Advances
5️⃣ Oxygen-Vacancy-Induced Enhancement of BiVO₄ Bifunctional Photoelectrochemical Activity for Overall Water Splitting – H. Fu, Q. Qi, Y. Li, J. Pan, C. Zhong (📅2024) [1️⃣ citation] 📄 Nanomaterials
6️⃣ Active site transfer improves electrocatalytic activity of Fe₃GeTe₂ edge planes for the oxygen evolution reaction: a first-principles calculation study – W. Su, Z. Kang, Q. Li, J. Pan (📅2024) [0️⃣ citations] 📄 New Journal of Chemistry
🎯 Conclusion:
Professor Pan Jing’s innovative research, interdisciplinary impact, and dedication to advancing chemical sciences make her an excellent nominee for the Chemical Research Excellence Award 🏅. Her contributions drive sustainable advancements in energy, catalysis, and nanomaterials, reinforcing her outstanding achievements in chemical research.