Mainak Saha | Materials Chemistry | Best Researcher Award

Dr. Mainak Saha | Materials Chemistry | Best Researcher Award

Postdoctoral Researcher | National Institute for Materials Science | Japan

Dr. Mainak Saha is an emerging materials science researcher whose work demonstrates notable advancements in additive manufacturing, alloy development, and microstructural engineering, with a strong focus on designing high-performance metal matrix composites and understanding the intricate relationships between processing conditions, segregation behavior, and resulting mechanical properties. With a portfolio comprising 14 peer-reviewed publications and 86 citations, supported by an h-index of 5 , his contributions reflect a growing influence within the global materials research community. His studies frequently explore the development of lightweight, high-strength alloy systems, the thermodynamic and kinetic factors governing phase formation, and strategies for microstructural refinement that enhance strength, durability, and thermal stability in engineered metals. Notably, his research on segregation-induced microstructural refinement in FeMnAlC-TiB metal matrix composites produced via laser powder bed fusion  highlights his expertise in advanced manufacturing pathways and his ability to integrate metallurgical principles with cutting-edge fabrication technologies. Dr. Saha has collaborated with over 80 co-authors, illustrating his active participation in multidisciplinary research teams and underscoring his capacity to contribute significantly to collaborative scientific initiatives . His work intersects with critical industrial fields such as transportation, energy, and high-performance manufacturing, where the need for innovative, lightweight, corrosion-resistant, and structurally reliable materials is rapidly increasing. Through his research, he contributes to solving practical engineering challenges, improving manufacturing efficiency, and supporting global efforts toward sustainable, high-performance material solutions. His scientific output reflects both academic rigor and technological relevance, bridging fundamental metallurgical science with applied engineering innovation. As he continues to expand his research portfolio, Dr. Saha’s contributions are expected to further influence materials design methodologies, support the development of next-generation structural materials, and strengthen the broader scientific understanding of microstructure-property relationships in advanced alloys .

Profiles : Google Scholar | Scopus | ORCID 

Featured Publications

Saha, M., & Mallik, M. (2021). Additive manufacturing of ceramics and cermets: Present status and future perspectives. Sādhanā, 46(3), 162.
Cited by: 40

Gault, B., Saksena, A., Sauvage, X., Bagot, P., Aota, L. S., Arlt, J., Belkacemi, L. T., … Saha, M. (2024). Towards establishing best practice in the analysis of hydrogen and deuterium by atom probe tomography. Microscopy and Microanalysis, 30(6), 1205–1220.*
Cited by: 30

Gururaj, K., Saha, M., Maurya, S. K., Nama, R., Alankar, A., Ponnuchamy, M. B., … (2022). On the correlative microscopy analyses of nano-twinned domains in 2 mol% zirconia-alloyed yttrium tantalate thermal barrier material. Scripta Materialia, 212, 114584.
Cited by: 17

Saha, M., Ponnuchamy, M. B., Sadhasivam, M., Mahata, C., Vijayaragavan, G., … (2022). Revealing the localization of NiAl-type nano-scale B2 precipitates within the BCC phase of Ni-alloyed low-density FeMnAlC steel. JOM, 74(8), 3181–3190.
Cited by: 15

 Mallik, M., & Saha, M. (2021). Carbon-based nanocomposites: Processing, electronic properties and applications. In Carbon nanomaterial electronics: Devices and applications (pp. 97–122).
Cited by: 15

Dr. Mainak Saha’s research advances the development of high-performance alloys and additive manufacturing technologies, driving innovations that strengthen modern engineering, enhance industrial efficiency, and support global progress in sustainable, next-generation materials. His work continues to bridge fundamental science with real-world technological impact.