Hassan Namazi | Polymer Chemistry | Best Paper Award

Prof. Hassan Namazi | Polymer Chemistry | Best Paper Award 

University of Tabriz | Iran

Professor Hassan Namazi is a leading scientist and academic renowned for his pioneering work in polymer chemistry, nanobiopolymers, and advanced drug delivery systems. His research focuses on the design, synthesis, and characterization of dendrimers, metal–organic frameworks (MOFs), and stimuli-responsive biopolymer nanocomposites for applications in cancer therapy, targeted drug delivery, and water remediation. With extensive experience in polymer synthesis, nanocomposite fabrication, spectroscopy, materials characterization, and computational modeling, he has developed innovative platforms for controlled and co-delivery of therapeutic agents, emphasizing biocompatibility, efficiency, and environmental sustainability. His contributions span fundamental research and practical applications, including photoluminescent polymers, glycodendrimers, and hybrid nanomaterials, establishing him as a key figure in advancing multifunctional biomaterials and nanotechnology-driven solutions. Prof. Namazi’s dedication to scientific excellence is reflected in his mentorship of emerging researchers, collaboration with interdisciplinary teams, and prolific publication record, demonstrating a consistent impact on both academic and applied chemical sciences. His work has earned national and international recognition, showcasing his leadership in developing eco-friendly polymers, functional nanocarriers, and stimuli-responsive drug delivery systems that address pressing biomedical and environmental challenges. Professor Namazi’s growing academic impact is evidenced by 10,627 citations, 211 documents, and an h-index of 63, reflecting his outstanding influence and leadership in the global materials science community.

Profiles : 
Google scholar | Scopus | ORCID | ResearchGate | LinkedIn

Featured Publications

Pooresmaeil, M., & Namazi, H. (2026). Iron oxide nanoparticles/polymer nanocomposite hydrogels. In Hydrogels for Wound Healing (pp. 327–363).

Karimi, S., & Namazi, H. (2025). Chitosan/dialdehyde starch coating onto l-tyrosine and curcumin intercalated layered double hydroxide for improved the therapeutic effects of breast cancer. International Journal of Biological Macromolecules, 147274.

Rasoulzadehzali, M., Namazi, H., Larsen, K. L., Mahoutforoush, A., … (2025). Engineering pH-sensitive CA/GO nanocomposite beads for dual-drug oral delivery: Improved therapeutic efficacy against breast cancer cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 138081.

Jafari, H., & Namazi, H. (2025). κ-carrageenan coated magnetic hydroxypropyl methylcellulose/chitosan nanoparticles as a pH-sensitive nanocarrier for efficient methotrexate release. International Journal of Biological Macromolecules, 146750. Cited by 1

Karimi, S., & Namazi, H. (2025). Doxorubicin-curcumin-co loaded layered double hydroxide coated with dialdehyde lactose/ZnO via Schiff-base bonding for simultaneous and targeted delivery of drugs to …. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 715, 136628. Cited by 5

Vedant Joshi | Polymer Chemistry | Best Researcher Award

Mr. Vedant Joshi | Polymer Chemistry | Best Researcher Award

PhD Scholar of CSIR Indian institute of petroleum mokhampur dehradun in india.

Dr. Elijah W. Stommel 🧠, born in Hamilton, Bermuda 🇧🇲, is a distinguished neurologist and professor at the Geisel School of Medicine at Dartmouth 🏥📚. He holds both an M.D. and Ph.D. from Boston University and has spent decades advancing research in neurology, particularly in Amyotrophic Lateral Sclerosis (ALS) 🧬. Dr. Stommel is widely recognized for his pioneering studies on environmental risk factors and neurodegenerative diseases 🌿🧪. He serves as a staff neurologist at Dartmouth-Hitchcock Medical Center and actively contributes as a reviewer and editor for numerous scientific journals 📖🔬. His dedication to teaching, research, and clinical care continues to inspire. ✨

Professional Profile

🔍 Summary of Suitability:

Vedant Joshi exemplifies the qualities of an outstanding researcher: innovation, technical expertise, and dedication to sustainable scientific advancement 🔬🌱. With over 4 years of focused research experience and a strong academic foundation, he has demonstrated excellence in catalysis, polymer science, and green chemistry. His ongoing PhD at CSIR-IIP reflects a deep commitment to academic and industrial impact 🎓⚗️.

🎓 Education

  • 📘 M.Sc. in Organic Chemistry (2013–2015)
    Government P.G. College, Gopeshwar Chamoli, Uttarakhand, India

  • 📗 B.Sc. (Bachelor of Science) (2011–2013)
    Government P.G. College, Gopeshwar Chamoli, Uttarakhand, India

  • 📚 PhD (Pursuing)
    CSIR–Indian Institute of Petroleum, Dehradun, Uttarakhand

💼 Work Experience

  • 🧪 Project Associate (Oct 2020 – Mar 2023)
    CSIR–Indian Institute of Petroleum, Dehradun

    • Worked on synthesis of Unsaturated Polyester Resin using Parr Reactor

    • Optimized reactant quantities and handled instruments like GPC, Rheometer, Viscometer

  • 🧫 Project Assistant (Feb 2018 – Mar 2020)
    CSIR–Indian Institute of Petroleum, Dehradun

    • Synthesized and optimized noble and non-noble metal catalysts

    • Hands-on work in pilot plant experiments and advanced instrumentation: GC, TEM, TPR-TPD, RAMAN

Professional Development 🚀📖

Vedant Joshi has shown remarkable professional growth through hands-on research and advanced technical skills 🧑‍🔬. He has gained expertise in polymer synthesis, catalyst development, and pilot-scale operations ⚗️. His proficiency with instruments like GC, TEM, Rheometer, and RAMAN 📊 reflects his analytical strength. Vedant actively participated in national and international conferences 🗣️, presenting his research at IIT Guwahati and attending workshops on Transmission Electron Microscopy 🔍. His contributions include multiple peer-reviewed publications and patents 📄💡. Vedant’s commitment to continuous learning and scientific excellence positions him as a valuable asset in sustainable material research and innovation 🌱🔬.

Research Focus 🔍🤖

Vedant Joshi’s research primarily focuses on catalysis, polymer science, and sustainable material development 🔬🌱. His work spans the synthesis and optimization of catalysts, development of unsaturated polyester resins, and advanced functional polymers for environmental and industrial applications ⚗️🧪. He has contributed to green chemistry through innovative methods in desulfurization and bitumen upgrading ♻️🛢️. Vedant is also engaged in nanoarchitectonics for fluorescence sensing of biomolecules like cholesterol and bilirubin 🧫✨. His interdisciplinary approach integrates organic chemistry, material science, and chemical engineering, aiming for eco-friendly and efficient technological solutions for energy and petrochemical industries ⚙️🌍.

🏅 Awards & Honors
  • 🧠 Patent Contributor
    Co-inventor of 3 patents in the fields of reactive desulfurization, novel copolymers, and bitumen additives 🇮🇳📜

    • US Patent: Reactive desulfurization via copolymerization (US 11,802,249 B2)

    • India & US Patent: Novel thiophene-based copolymers (202111061088/0212NF202)

    • India Patent: Additives for bitumen upgradation (202311020225)

  • 🎤 Oral Presentation at SPSI-MACRO 2023
    Delivered a talk at the 17th International Conference on Polymer Science and Technology at IIT Guwahati 🧪🌍

  • 🛠️ Workshop Participation


  • Completed 7-day hands-on training in Transmission Electron Microscopy 🧫🔍

 

Publications & Citations 📚

📘 Fabrication of Au Nanoparticles Supported on One-Dimensional La₂O₃ Nanorods for Selective Esterification of Methacrolein to Methyl Methacrylate – B Paul et al., ACS Sustainable Chem. Eng. 2019, Cited by: 32 🔬

🧪 Low-temperature catalytic oxidation of aniline to azoxybenzene over an Ag/Fe₂O₃ nanoparticle catalyst using H₂O₂ as an oxidant – B Paul et al., New J. Chem. 2019, Cited by: 21 ⚗️

🔷 Development of Highly Efficient and Durable Three-Dimensional Octahedron NiCo₂O₄ Spinel Nanoparticles toward the Selective Oxidation of Styrene – B Paul et al., Ind. Eng. Chem. Res. 2019, Cited by: 19 💎

🔬 Oligomer sensor nanoarchitectonics for “turn-on” fluorescence detection of cholesterol at the nanomolar level – V Joshi et al., Molecules 2022, Cited by: 9 🧬

🔥 Enhanced coke-resistant Co-modified Ni/modified alumina catalyst for the bireforming of methane – S Panda et al., Catal. Sci. Technol. 2023, Cited by: 5 🔥

🌱 An economic, and environmentally benign Psidium guajava L. leaves catalyst for biodiesel production at room temperature – A Sarkar et al., Ind. Crops Prod. 2024, Cited by: 2 🌿

🛢️ Synthesis of polyesters derived from glycerol and phthalic anhydride and its application for bitumen modification – V Joshi et al., J. Appl. Polym. Sci. 2024, Cited by: 2 🧴

🏗️ Use of modified chitosan as bitumen modifier and its impact on rheological properties – K Kumar et al., Environ. Sci. Pollut. Res. 2024, Cited by: 2 🛠️

🧠 Diabetic retinopathy detection using convolutional neural networks – VN Joshi et al., IJRASET 2022, Cited by: 2 👁️

💡 Development of petroleum-derived polymeric additive to enhance bituminous properties with ML model – M Awasthi et al., Sustain. Chem. Environ. 2024, Cited by: – 🤖

📜 Process for preparation of higher-grade VG bitumens using sulfur-based polymeric additives (SBPA) – T Senthilkumar et al., US Patent App. 18/612,469 2024, Cited by: – 🧪

⚙️ Method for reactive desulfurization of crude oil and sulfur rich refinery fractions – A Ray et al., US Patent 11,802,249 2023, Cited by: – 🛢️

🔗 Poly(thiophene-co-benzothiophene-co-dibenzothiophene) copolymers and process thereof – A Ray et al., US Patent App. 18/064,529 2023, Cited by: – 🔬

📖 Mini Review on Conjugated polymer-based Fluorescence Techniques for Bilirubin Detection – V Joshi & T Senthilkumar, BJSTR 2022, Cited by: – 📘

🌊 “Turn-On” Fluorescence Sensing of Bilirubin Using Water-Soluble Conjugated Polymer – TS Kumar et al., Int. J. Anal. Appl. Chem. 2021, Cited by: – 💡

 🔍 Conclusion:

Vedant Joshi’s research blends scientific rigor with real-world relevance. His consistent contributions to sustainability, innovation, and materials science make him a strong and deserving contender for the Best Researcher Award. His work not only advances academic knowledge but also supports industrial applications, aligning with global scientific priorities. 🥇🌐