Moussa Ouakki | Electrochemistry | Best Researcher Award

Prof. Moussa Ouakki | Electrochemistry | Best Researcher Award

Ibn Tofail University| Morocco

Prof. Moussa Ouakki is a distinguished Moroccan chemist and academic scholar serving as Maître de Conférence en Chimie at the École Nationale Supérieure de Chimie, Université Ibn Tofaïl, Kénitra, Maroc. He holds a doctorate in Fundamental and Applied Chemistry with a specialization in the valorization of imidazole compounds for corrosion inhibition of steel in acidic media through theoretical, electrochemical, and spectroscopic studies. His academic background also includes advanced training in physicochemical materials, organic and environmental chemistry, and life sciences. In addition, he has pursued professional development in chemical education, patent systems, and chemical safety in collaboration with the Organisation for the Prohibition of Chemical Weapons (OPCW). Throughout his academic career, Prof. Ouakki has contributed extensively to teaching, research supervision, and curriculum design across undergraduate, engineering, and doctoral programs. His teaching expertise spans electrochemical kinetics, materials science, corrosion mechanisms, and electrolyte chemistry. His research interests focus on corrosion inhibition, green chemistry, electrochemical analysis, materials development, and theoretical modeling of corrosion systems. His research skills include density functional theory (DFT), electrochemical impedance spectroscopy, electrodeposition, dielectric characterization, and molecular dynamics simulations. He has co-supervised several doctoral candidates, published more than a hundred international research papers, contributed multiple book chapters, and secured a patent for novel imidazole-based corrosion inhibitors. As a respected member of editorial boards and a reviewer for leading scientific journals, Prof. Ouakki continues to make remarkable contributions to advancing sustainable chemistry and materials protection. His academic impact is further reflected in his growing recognition with 3,836 citations, 125 documents, and an h-index of 41.

Profiles: Google Scholar | Scopus | ORCID

Featured Publications

Ouakki, M., Galai, M., Rbaa, M., Abousalem, A. S., Lakhrissi, B., Rifi, E. H., & Ebn Touhami, M. (2019). Quantum chemical and experimental evaluation of the inhibitory action of two imidazole derivatives on mild steel corrosion in sulphuric acid medium. Heliyon, 5(11), e02716. Cited by: 147

Rbaa, M., Ouakki, M., Galai, M., Berisha, A., Lakhrissi, B., Jama, C., Warad, I., & Touhami, M. E. (2020). Simple preparation and characterization of novel 8-hydroxyquinoline derivatives as effective acid corrosion inhibitor for mild steel: Experimental and theoretical studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 602, 125094. Cited by: 144

Ouakki, M., Galai, M., Rbaa, M., Abousalem, A. S., Lakhrissi, B., Touhami, M. E., & Cherkaoui, M. (2020). Electrochemical, thermodynamic and theoretical studies of some imidazole derivatives compounds as acid corrosion inhibitors for mild steel. Journal of Molecular Liquids, 319, 114063. Cited by: 140

Ouakki, M., Galai, M., & Cherkaoui, M. (2022). Imidazole derivatives as efficient and potential class of corrosion inhibitors for metals and alloys in aqueous electrolytes: A review. Journal of Molecular Liquids, 345, 117815. Cited by: 123

Oubaaqa, M., Ouakki, M., Rbaa, M., Abousalem, A. S., Maatallah, M., Benhiba, F., & Touhami, M. E. (2021). Insight into the corrosion inhibition of new amino acids as efficient inhibitors for mild steel in HCl solution: Experimental studies and theoretical calculations. Journal of Molecular Liquids, 334, 116520.

 

Xiang Peng | electrocatalysis | Best Researcher Award

Prof. Dr. Xiang Peng | electrocatalysis | Best Researcher Award

Professor at Wuhan Institute of Technology in China.

Dr. Xiang Peng (📘🎓), Professor at the School of Materials Science and Engineering, Wuhan Institute of Technology (🇨🇳), specializes in nanomaterials chemistry and their applications in energy storage and conversion ⚡🔋. With over 100 peer-reviewed publications and an H-index of 48 📈, his work has been cited more than 7,000 times. A two-time recipient of the World’s Top 2% Scientist honor by Elsevier & Stanford (2023–2024) 🏅, Dr. Peng has earned numerous awards for teaching and research excellence 🧪🏆. He also serves as editor or board member for ~10 journals, contributing significantly to the scientific community 🌍📚.

Professional Profile

Google Scholar 

Orcid 

Scopus

🔍 Summary of Suitability:

Dr. Xiang Peng demonstrates exceptional academic and research excellence in the fields of nanomaterials chemistry and energy storage and conversion. With over 100 peer-reviewed publications, 7000+ citations, and an H-index of 48, his scientific impact is significant on both national and global scales 🌍📈. He has led 8 funded research projects and earned numerous prestigious recognitions, including being listed among the World’s Top 2% Scientists (2023–2024) by Elsevier and Stanford University 🌟🔬.

🎓 Education

  • 📅 2014.09 – 2017.10: Ph.D. in Physics and Materials Science, City University of Hong Kong (CityU) 🇭🇰

    • 👨‍🏫 Supervisor: Prof. Paul K. Chu

  • 🏅 Awarded Outstanding Doctoral Research Award & Outstanding Research Thesis Award

  • 📅 Before 2014: Master’s degree (details not specified)

    • 🏆 Excellent Master’s Thesis of Hubei Province

🧑‍🔬 Professional Experience

  • 🏫 2018.01 – Present: Professor, School of Materials Science and Engineering, Wuhan Institute of Technology (WIT) 🇨🇳

  • 🧪 2018.07 – 2018.09: Postdoctoral Fellow, Dept. of Physics, City University of Hong Kong (CityU)

  • 🔬 2017.12 – 2018.02: Postdoctoral Fellow, Dept. of Physics, CityU

  • 🧠 2017.09 – 2017.11: Senior Research Associate, Dept. of Physics, CityU

Professional Development 🚀📖

Dr. Xiang Peng (🔬📚) has demonstrated remarkable professional development through continuous academic and research excellence. After earning his Ph.D. in Physics and Materials Science from City University of Hong Kong (🇭🇰), he advanced from Senior Research Associate and Postdoctoral Fellow roles to become a Professor at Wuhan Institute of Technology (🇨🇳) in 2018. His focus on nanomaterials for energy storage and conversion ⚡🔋 has led to over 100 high-impact publications and multiple government-funded projects 💼📊. As an editorial board member of ~10 journals 📖🌐, he remains a dedicated leader in research innovation, education, and scientific collaboration globally 🌍🤝.

Research Focus 🔍🤖

Dr. Xiang Peng’s research primarily focuses on Nanomaterials Chemistry and its applications in Energy Storage and Conversion ⚡🔋. His work involves the design and synthesis of advanced nanomaterials for cutting-edge technologies such as batteries, supercapacitors, and other energy devices 🔬🧪. He explores the structure-property-performance relationship of materials to enhance their efficiency and sustainability 🌱💡. With expertise in materials science and interdisciplinary techniques, Dr. Peng contributes significantly to green energy and smart material development 🔧🌍. His research falls under the categories of Materials Science, Nanotechnology, and Energy Engineering 🧠🧱⚙️, addressing global challenges in renewable energy and sustainability.

🏆 Awards & Honors

  • 🌍 2023–2024: World’s Top 2% Scientist (Elsevier & Stanford University)

  • 🧑‍🏫 2023: “Top Ten Teachers’ Ethics Model” of WIT

  • 🎓 2022: “Top 100 Supervisors” of WIT

  • 🥇 2021: Outstanding Individual Award in Research Work, WIT

  • 📘 2021: Advanced Worker in Teaching and Research, WIT

  • 🏅 2020: “Excellent Class Teacher” Award, WIT

  • 👨‍🔬 2019: 100 Talents Programme of Hubei Province

  • 👨‍🏫 2019: Chutian Scholar Programme, Hubei Province

  • 🧪 2017: Outstanding Doctoral Research Award, CityU (Top 1)

  • 📄 2017: Outstanding Research Thesis Award, CityU (Top 2%)

  • 🎓 2016: Chow Yei Ching Graduate Studies Scholarship, CityU (3 quotas/year)

  • 🏆 2015–2017: Outstanding Academic Performance Award, CityU

  • 🖼️ 2015: Best Image Award, Art of Scientific Image Contest, CUHK

  • 📘 2015: Excellent Master’s Thesis of Hubei Province

  • 🥇 2014: President’s Award, WUST (1 quota/year for grad students)

  • 💰 2013: National Scholarship for Graduate Students

Publications & Citations 📚

📘 Freestanding mesoporous VN/CNT hybrid electrodes for flexible all‐solid‐state supercapacitors472 citations 📈 | Published: 2013 📅

Recent progress of transition metal nitrides for efficient electrocatalytic water splitting425 citations 🔬 | Published: 2019 🗓️

💧 Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting397 citations 🚰 | Published: 2020 📆

🔋 Enhanced ion conductivity in conducting polymer binder for high‐performance silicon anodes in advanced lithium‐ion batteries364 citations 💡 | Published: 2018 📅

🦠 Antibacterial effects of titanium embedded with silver nanoparticles based on electron-transfer-induced reactive oxygen species288 citations ⚛️ | Published: 2017 🗓️

An antibacterial platform based on capacitive carbon-doped TiO2 nanotubes after direct or alternating current charging209 citations 💥 | Published: 2018 📆

🧪 Elucidating the Intercalation Pseudocapacitance Mechanism of MoS2–Carbon Monolayer Interoverlapped Superstructure: Toward High-Performance Sodium-Ion …182 citations ⚙️ | Published: 2017 🗓️

🔋 Hydrogenated V2O5 Nanosheets for Superior Lithium Storage Properties180 citations 🧱 | Published: 2016 📅

🧲 Highly stretchable conductive glue for high‐performance silicon anodes in advanced lithium‐ion batteries177 citations 🧵 | Published: 2018 📆

🌬️ Ni/Co-based nanosheet arrays for efficient oxygen evolution reaction157 citations 🌊 | Published: 2018 🗓️

⚗️ Mo2C/VC heterojunction embedded in graphitic carbon network: An advanced electrocatalyst for hydrogen evolution147 citations 🔍 | Published: 2019 📅

🔍 Conclusion:

Given Dr. Xiang Peng’s prolific research output, global impact, innovative contributions in nanomaterials and energy technologies, as well as his mentorship and academic service, he clearly exemplifies the qualities of a Best Researcher Award recipient 🏅🔝. His work not only advances scientific knowledge but also contributes to addressing critical challenges in energy sustainability, making him a role model for emerging researchers worldwide 🌱🚀.