Arul Pundi | Materials Chemistry | Chemical Scientist Award

Dr. Arul Pundi | Materials Chemistry | Chemical Scientist Award

Postdoctoral Research Fellow | Feng Chia University | Taiwan

Dr. Pundi Arul is an emerging early-career researcher at Feng Chia University, Taichung, Taiwan, contributing to advancing photocatalysis, polymer composites, and defect-engineered semiconductor materials. He has authored 14 peer-reviewed publications that have collectively received 328 citations, demonstrating the growing visibility and scientific influence of his work within the global materials science community, and his h-index of 10 underscores the impact of his research relative to his career stage. His primary research focus lies in the design, synthesis, and optimization of vacancy-engineered polymeric and graphitized carbon nitride photocatalysts, materials that hold significant promise for solar energy conversion, environmental remediation, and sustainable oxidation–reduction reactions. His recent comprehensive review on vacancy defects provides valuable mechanistic insights and offers strategic guidance for future photocatalyst development. Beyond defect engineering, Dr. Arul’s research interests encompass polymer science, nanomaterials, photocatalytic reaction pathways, and semiconductor modifications aimed at improving light absorption and charge-carrier dynamics. He frequently employs advanced characterization tools to probe structure–property relationships, contributing to more rational and efficient catalyst design. Collaboration is a key dimension of his scientific work, reflected in his co-authorship with 25 researchers across interdisciplinary and international projects, strengthening the depth and application potential of his studies in sustainable materials and green energy technologies. With research aligned toward global priorities in clean energy and environmental protection, Dr. Arul’s contributions support the development of next-generation photocatalytic systems capable of pollution mitigation and renewable energy harvesting. Through his expanding research trajectory, he continues to establish himself as a promising scientist in materials chemistry and photocatalytic science.

Profiles : Google Scholar | Scopus | ORCID

Featured Publications

Pundi, A., Chang, C. J., Chen, J., Hsieh, S. R., & Lee, M. C. (2021).A chiral carbazole based sensor for sequential “on-off-on” fluorescence detection of Fe³⁺ and tryptophan/histidine.
Sensors and Actuators B: Chemical, 328, 129084.Cited by: 95

Pundi, A., & Chang, C. J. (2022).Recent advances in synthesis, modification, characterization, and applications of carbon dots.Polymers, 14(11), 2153.Cited by: 67

Pundi, A., Chang, C. J., Chen, Y. S., Chen, J. K., Yeh, J. M., Zhuang, C. S., & Lee, M. C. (2021).An aniline trimer-based multifunctional sensor for colorimetric Fe³⁺, Cu²⁺ and Ag⁺ detection, and its complex for fluorescent sensing of L-tryptophan.Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 247, 119075.Cited by: 34

Reddy, P. M., Hsieh, S. R., Lee, M. C., Chang, C. J., Pundi, A., Chen, Y. S., Lu, C. H., & others. (2019).Aniline trimer based chemical sensor for dual responsive detection of hazardous CN¯ ions and pH changes.Dyes and Pigments, 164, 327–334. Cited by: 27

Pundi, A., & Chang, C. J. (2023).Recent developments in the preparation, characterization, and applications of chemosensors for environmental pollutants detection.Journal of Environmental Chemical Engineering, 11(5), 110346.Cited by: 25

Dr. Pundi Arul’s research advances next-generation sensing and photocatalytic materials, enabling cleaner environments, sustainable technologies, and high-precision analytical tools. His innovations contribute directly to global efforts in environmental protection, renewable energy, and advanced material design.

Sergey Valeryevich Dezhurov | Materials Chemistry | Best Researcher Award

Dr.Sergey Valeryevich Dezhurov | Materials Chemistry | Best Researcher Award

Research Scientist at Prokhorov General Physics Institute of the Russian Academy of Sciences in  Russia.

🔬 Short Biography 🌿💊📚

👨‍🔬 Сергей Валерьевич Дежуров is a seasoned Russian chemist . With over 20 years of experience in the field of chemistry and nanotechnology 🧪, he has contributed significantly to scientific innovation. A graduate of Novosibirsk State University, Faculty of Natural Sciences (1996–2001), he specialized in chemistry and later pursued postgraduate studies in bioorganic chemistry 📘. His professional journey spans roles as a chemistry teacher, synthetic chemist, sales and technical manager, and senior research scientist. Currently affiliated with the Institute of General Physics (IOF RAS) and the Research Institute of Applied Acoustics (NIIPA), he focuses on luminescent materials, quantum dots, bioconjugates, and thin-film technologies 🔬. Sergey is the author of 20+ scientific publications and 4 patents, with deep involvement in international and Russian R&D projects. He is passionate about applying scientific knowledge to create real-world solutions, especially in advanced optics and sensor systems 🌍.

PROFILE 

SCOPUS 

🔍 Summary of Suitability:

Sergey V. Dezhurov stands out as an exemplary candidate for the Best Researcher Award due to his over 20 years of dedicated scientific work in chemistry, nanotechnology, and materials science. His deep expertise in quantum dots, polymer composites, bioorganic chemistry, and optical materials has yielded breakthrough innovations with real-world impact. His experience spans both academic and industrial domains, showcasing versatility, technical depth, and strong leadership in high-tech R&D environments.

🔹 Education & Experience 

🎓 Sergey Dежуров completed his undergraduate studies in chemistry at Novosibirsk State University (1996–2001) and advanced his knowledge through postgraduate studies in bioorganic chemistry and management courses 📚. His career began in education and laboratory roles before progressing into industrial research. Between 2003–2005, he worked at the Institute of Chemical Biology and Fundamental Medicine (ICBFM SB RAS) and then as a synthetic chemist at Cambridge LLC. From 2008 onwards, he held research and leadership roles in high-tech centers such as “Nanotech-Dubna” and NIIPA, focusing on quantum dots, polymeric materials, and optical sensors 🧪. He also contributed to technology commercialization and industrial process optimization. Since 2024, he has been working at the Institute of General Physics (IOF RAS) on thin-film technologies for microdisplays and solar cells 🌞. His versatile experience spans R&D, team leadership, and complex instrumentation, establishing him as an accomplished figure in chemical technology and nanomaterials 🌐.

🔹 Professional Development 

🧑‍🔧 Sergey Dежуров’s professional development reflects a commitment to innovation, multidisciplinary collaboration, and continuous learning. He has mastered a variety of specialized software tools such as ChemOffice, OriginLab, and MultiChrom for analytical and synthetic chemistry applications 💻. His hands-on expertise covers organic and colloidal synthesis, design of thixotropic gels, development of bioconjugates, and surface modification of nanoparticles. He has independently acquired knowledge in optical and analytical instrumentation software and is proficient in spoken English 🌍. Sergey has played key roles in developing fluorescent microspheres for cytometry, FRET-based sensor systems, and new-generation luminescent materials. He led process engineering and team management in pilot production setups, demonstrating both technical and leadership skills 🧑‍🏫. His involvement in national and international grant-funded projects has further refined his strategic research and development abilities, keeping him at the cutting edge of applied chemistry, nanotechnology, and material science 🌟.

🏅 Awards and Recognitions

  • 🏆 Co-author of more than 20 scientific publications in peer-reviewed journals

  • 📚 Author of 4 patents in the field of luminescent materials and quantum dots

  • 🎓 Contributor to national and international research projects and grants

  • 🧪 Developer of innovative sensor systems using quantum dot-based FRET

  • 🔬 Recognized for high-impact research in nano-optical materials and bioconjugates

  • 🗣️ Regular participant and presenter at scientific conferences in Russia and abroad

🔬 Research Focus

🧪 Sergey Dежуров’s research is deeply rooted in nanomaterials chemistry, focusing on quantum dots, luminescent compounds, and advanced polymer systems. His work encompasses organic and colloidal synthesis, photoaffinity labeling of biomolecules, and bioconjugation techniques relevant to diagnostics and life sciences 💡. A key part of his research includes thin-film technologies for applications in microdisplays and solar cells, and the development of sensor systems based on FRET principles. Sergey has also designed high-stability semiconductor colloidal quantum dots and customized surface modifications for nanoparticles, tailoring properties like charge, polarity, and dispersibility ⚗️. His innovations support cutting-edge applications in optical sensing, nanobiotechnology, and materials engineering. By bridging chemistry with device-level implementation, his work contributes to the development of real-world technologies in areas like biosensors, optoelectronics, and photonics 🌈. His ongoing efforts ensure the evolution of intelligent, functional nanomaterials that drive future-oriented scientific solutions.

Publications & Citations 📚

📄 “Effect of combustion air humidification on the operation of a biomass boiler – Theoretical analysis”Heliyon, 2025 | 📅 Published: 2025 | 🔁 Cited by: 0 | ✍️ Authors: Dlouhý, T.; Havlík, J.

📄 “Improving the energy effectivity of biomass drying for utilisation in energy systems by combining convective and contact drying”Drying Technology, 2024 | 📅 Published: 2024 | 🔁 Cited by: 0 | ✍️ Authors: Havlík, J.; Dlouhý, T.

🔍 Conclusion:

With a unique blend of scientific creativity, technological innovation, and sustained impact, Sergey V. Dezhurov exemplifies the core values of the Best Researcher Award. His pioneering work in functional nanomaterials and sensor systems has contributed meaningfully to modern chemistry, nanotech-based diagnostics, and advanced materials engineering. His candidacy reflects excellence, leadership, and a forward-looking vision in scientific research .

Chuanlin Wang | Materials Chemistry | Best Researcher Award

Dr. Chuanlin Wang | Materials Chemistry | Best Researcher Award

Director of Smart Construction Major at Shantou University, China.

🔬 Short Biography 🌿💊📚

Dr. Chuanlin Wang 🎓 is a distinguished civil engineer and researcher currently serving as a Lecturer in the Department of Civil and Environmental Engineering at Shantou University, China 🇨🇳. With a strong academic background in civil engineering, he earned his Ph.D. from the University of Leeds 🇬🇧 and his B.A. from the Dalian University of Technology 🇨🇳. His professional focus centers around innovative concrete materials 🧱, particularly in enhancing performance under marine conditions 🌊. Dr. Wang’s work contributes significantly to developing ultra-high-performance concrete, fiber-reinforced composites, and structure enhancement techniques. His impactful research is backed by key provincial grants 🧪 and has led to numerous peer-reviewed publications 📚 in international journals. Passionate about infrastructure durability and sustainability, he explores corrosion mechanisms, admixtures, and prefabricated building technologies. Dr. Wang continues to drive scientific progress in concrete technology, influencing structural resilience and green building practices globally 🌍.

PROFILE 

ORCID 

🔍 Summary of Suitability:

Dr. Chuanlin Wang combines top-tier academic credentials (Ph.D. from University of Leeds 🎓) with a proven track record as a Lecturer at Shantou University 🏫. His specialized focus on marine-durable concretes and advanced cementitious composites directly addresses critical infrastructure challenges 🌊🧱. Consistent success in securing competitive provincial grants 💰 and leading interdisciplinary teams 🤝 demonstrates both vision and leadership—key traits of an outstanding researcher.

📘 Education & Experience

🎓 Education:

  • 📘 Ph.D. in Civil Engineering – University of Leeds, UK (2012.9 – 2016.9)

  • 📗 B.A. in Civil Engineering – Dalian University of Technology, China (2007.9 – 2012.6)

🧑‍🏫 Professional Experience:

  • 🏫 Lecturer, Department of Civil and Environmental Engineering, Shantou University (2017.2 – Present)

Professional Development 🚀📖

Dr. Chuanlin Wang’s professional development reflects a deep dedication to both academic excellence and engineering innovation 🏗️. After earning his doctoral degree in the UK 🇬🇧, he returned to China to serve at Shantou University, where he nurtures talent and leads cutting-edge research in civil engineering 🏢. Over the years, he has built expertise in concrete performance improvement, particularly in challenging marine environments 🌊. His collaborative and interdisciplinary research includes state-funded projects focusing on sulphoaluminate cement, fiber-reinforced materials, and prefabricated structures 🧪. With numerous high-impact publications in international journals 📖, Dr. Wang remains engaged in knowledge dissemination and professional growth. His development is marked by a clear trajectory toward enhancing structural durability and resilience, while supporting sustainable infrastructure goals 🌱. Through ongoing grants, mentoring, and academic contributions, he continually upgrades his skills and impact in both educational and research domains 📚🧑‍🔬.

Research Focus 🔍🤖

Dr. Chuanlin Wang’s research focuses on advanced concrete materials within civil engineering 🧱. He is particularly interested in the behavior of concrete exposed to marine environments 🌊, where corrosion and durability are key challenges. His work explores the development of ultra-high-performance concrete (UHPC) and fiber-reinforced materials 🧵 that offer enhanced mechanical properties and longevity. Additionally, Dr. Wang is an expert in sulphoaluminate cement systems, which are known for rapid strength gain and environmental benefits ♻️. His recent studies investigate the impact of salt ions and seawater concentration on cement hydration and durability, making valuable contributions to marine construction technology 🚢. Prefabricated building systems 🏗️ and structural reinforcement techniques are also central to his interests, aligning with global efforts in sustainable and resilient infrastructure development. By integrating materials science and structural design, Dr. Wang advances the frontiers of construction engineering with a focus on performance, sustainability, and innovation 🌍.

Awards and Honors 🏆🎖️

🏅 Awards & Recognitions:

  • 🧪 2023: Grant from Guangdong Provincial Natural Science Foundation – ¥100,000

  • 🔬 2021: Awarded Guangdong Provincial Junior Innovative Talents Project – ¥30,000

  • 📑 Multiple publications in high-impact journals like Materials, Construction and Building Materials, and Journal of Materials in Civil Engineering

Publications & Citations 📚

  1. 📘 2025 | Seawater-Activated Mineral Synergy in Sulfoaluminate Cement: Corrosion Resistance Optimization via Orthogonal Design 🔬

  2. 📗 2024 |  Multi-technique Analysis of Seawater Impact on Calcium Sulphoaluminate Cement Mortar 🧪

  3. 📘 2025 |  Influence of Seawater and Salt Ions on the Properties of Calcium Sulfoaluminate Cement 🌊

  4. 📙 2016 | Retrofitting of Masonry Walls Using a Mortar Joint Technique; Experiments and Numerical Validation 🏗️

  5. 📕 2021 |  Influence of Steel Fiber Shape and Content on the Performance of Reactive Powder Concrete (RPC) 🧵

  6. 📘 2021 | Influence of Seawater Concentration on Early Hydration of CSA Cement – A Preliminary Study ⚗️

  7. 📘 2021 |Seismic Performance of Precast Columns with Two Different Connection Modes 🚧

🔍 Conclusion:

With a record of groundbreaking research, successful funding, and dedication to education and sustainability, Dr. Wang exemplifies the qualities of a “Best Researcher.” His work not only deepens scientific understanding but also delivers practical solutions for resilient, eco-conscious infrastructure 🌍🏆.