Shraddha Yadav | Green Chemistry | Women Researcher Award

Dr. Shraddha Yadav | Green Chemistry | Women Researcher Award

Postdoctoral Fellow |Indian Institute of Technology Bombay | India

Dr. Shraddha Yadav is a distinguished researcher known for her impactful work in environmental catalysis, electrochemical remediation, and sustainable materials engineering. With 21 publications, 263 citations, and an h-index of 8, her research demonstrates strong scientific productivity and interdisciplinary significance. Her recent studies, published in high-impact journals such as Chemical Engineering Journal and Electrochimica Acta, explore advanced nanostructured catalyst systems, including Fe₃C-infused hydrochar-based cathodes and MIL-53(Fe)-derived Fe₃O₄ MWCNT composites, for the efficient degradation of persistent organic pollutants. By integrating green chemistry, nanomaterial synthesis, and electrochemical process optimization, she contributes to developing sustainable wastewater treatment and pollution control technologies. Her comparative analyses of bio-electro-Fenton and bio-electro-peroxone systems provide key insights into improving catalytic efficiency and environmental compatibility. Through collaborations with more than 25 co-authors from diverse scientific backgrounds, she advances interdisciplinary approaches to address global environmental challenges. Collectively, her work supports the advancement of catalytic and electrochemical pathways for pollutant degradation, aligning with sustainable development goals on clean water, responsible production, and climate action while reinforcing the role of scientific innovation in promoting a cleaner, greener future.

Profiles : Google Scholar | Scopus | ORCID | ResearchGate | LinkedIn

Featured Publications

Sabyasachi Sarkar | Bioinorganic Chemistry | Best Researcher Award

Prof. Dr. Sabyasachi Sarkar | Bioinorganic Chemistry | Best Researcher Award 

Honorary Distinguished Professor | Ramakrishna Mission Vidyamandira | India

Prof. Dr. Sabyasachi Sarkar is a distinguished chemist whose pioneering work bridges fundamental and applied research, combining enzymatic and nanocarbon innovations to create transformative solutions for science and society. He has led and contributed to advanced research in bioinorganic chemistry, catalysis, and nanomaterial systems, with a focus on enzyme-inspired catalysis, sustainable chemical processes, and nanocarbon-based energy conversion. His interdisciplinary research integrates biochemical principles with material science, resulting in significant advancements in metalloenzyme modeling, biomimetic catalyst development, and functional nanomaterials. Prof. Sarkar’s contributions are further exemplified by multiple groundbreaking patents in drug delivery, ambient energy conversion, and catalytic ammonia synthesis, demonstrating both innovation and real-world applicability. His academic influence extends through the training and mentoring of scientists, fostering collaborations across chemistry, biology, and materials science. Prof. Sarkar has received numerous honors and recognitions for his excellence in research and education, reflecting his role as a global leader in advancing sustainable chemistry. His scholarly impact is evident in his 6,444 citations, 229 documents, and an h-index of 39, underscoring the enduring significance and reach of his work in chemical sciences.

Profiles : Google Scholar | Scopus | ORCID | ResearchGate | LinkedIn

 

Featured Publications

Müller, A., Sarkar, S., Shah, S. Q. N., Bögge, H., Schmidtmann, M., & Sarkar, S., et al. (1999). Archimedean synthesis and magic numbers: “Sizing” giant molybdenum‐oxide‐based molecular spheres of the keplerate type. Angewandte Chemie International Edition, 38(21), 3238–3241. Cited by: 503.

Tripathi, S., Sonkar, S. K., & Sarkar, S. (2011). Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale, 3(3), 1176–1181. Cited by: 358.

Goswami, S., Das, S., Aich, K., Pakhira, B., Panja, S., Mukherjee, S. K., & Sarkar, S. (2013). A chemodosimeter for the ratiometric detection of hydrazine based on return of ESIPT and its application in live-cell imaging. Organic Letters, 15(21), 5412–5415. Cited by: 263.

Das, S. K., Chaudhury, P. K., Biswas, D., & Sarkar, S. (1994). Modeling for the active site of sulfite oxidase: Synthesis, characterization, and reactivity of [MoVIO₂(mnt)₂]²⁻ (mnt²⁻ = 1,2-dicyanoethylenedithiolate). Journal of the American Chemical Society, 116(20), 9061–9070. Cited by: 217.

Tripathi, S., & Sarkar, S. (2015). Influence of water soluble carbon dots on the growth of wheat plant. Applied Nanoscience, 5(5), 609–616. Cited by: 200.

Nezar H Khdary | Organic Chemistry | Best Researcher Award

Prof. Dr. Nezar H Khdary | Organic Chemistry | Best Researcher Award

Research Professor | King Abdulaziz City for Science and Technology | Saudi Arabia

Prof. Dr. Nezar H. Khdary is a distinguished Saudi scientist at the King Abdulaziz City for Science and Technology (KACST), Riyadh, where he serves as a senior researcher and expert in nanotechnology, analytical chemistry, and environmental science. He earned his Ph.D. from the University of Southampton, UK , specializing in Silica Nano-Scavengers for the Determination of Environmental Pollutants. His academic journey also includes professional certification as a Public Health Consultant from the Saudi Commission for Health Specialties and visiting research appointments at Northwestern University and the University of Central Florida. Dr. Khdary possesses a broad interdisciplinary expertise encompassing nanomaterials, photocatalysis, green chemistry, CO₂ capture and conversion, hydrogen evolution, and public health research. He has undergone advanced professional training in over twenty international courses and workshops, including those from Duke University, Johns Hopkins University, the University of Michigan, and KAUST, covering topics from climate change and environmental health to advanced microscopy, data analytics, and intellectual property. His prolific research output spans more than 45 publications in high-impact journals such as Catalysts, RSC Advances, Nanomaterials, Sustainability, and Journal of Molecular Liquids, contributing significantly to the fields of nanocatalysis, photoreduction, and sustainable energy conversion. Dr. Khdary’s extensive technical proficiency includes advanced analytical techniques such as GC-MS, LC-MS, XRD, FE-SEM, UV-Vis, BET surface area analysis, and potentiostat methods. Throughout his career, he has demonstrated leadership in scientific innovation and mentoring, earning recognition through national and international collaborations aimed at addressing environmental and energy challenges. His contributions reflect a deep commitment to advancing sustainable technologies and public health. Dr. Khdary’s academic impact is further reflected in his growing recognition with 905 citations, 45 documents, and an h-index of 18.

Profiles: Google scholar | scopus | ORCID |ReasearchGate | LinkedIn

Featured Publications

1. Alsarhan, L. M., Alayyar, A. S., Alqahtani, N. B., & Khdary, N. H. (2021). Circular carbon economy (CCE): A way to invest CO₂ and protect the environment, a review. Sustainability, 13(21), 11625. Cited by: 118

2. Khdary, N. H., Alayyar, A. S., Alsarhan, L. M., Alshihri, S., & Mokhtar, M. (2022). Metal oxides as catalyst/supporter for CO₂ capture and conversion: A review. Catalysts, 12(3), 300. Cited by: 103

3. Khdary, N. H., Almuarqab, B. T., & El Enany, G. (2023). Nanoparticle-embedded polymers and their applications: A review. Membranes, 13(5), 537. Cited by: 81

4. Khdary, N. H., Abdesalam, M. E., & El Enany, G. E. L. (2014). Mesoporous polyaniline films for high performance supercapacitors. Journal of The Electrochemical Society, 161(9), G63–G68. Cited by: 79

5. Howard, A. G., & Khdary, N. H. (2007). Spray synthesis of monodisperse sub-micron spherical silica particles. Materials Letters, 61(8–9), 1951–1954. Cited by: 53

Patrycja Żak | Environmental Chemistry | Women Researcher Award

Assoc. Prof. Dr. Patrycja Żak | Environmental Chemistry | Women Researcher Award

Associate Professor, UAM Poznań, Poland.

Dr. Patrycja Żak is an Associate Professor in the Department of Organometallic Chemistry at Adam Mickiewicz University in Poznań, Poland. She holds a distinguished academic and research career focused on green chemistry, organometallic synthesis, and functional nanomaterials. With over 47 peer-reviewed publications and 16 patents, her contributions span catalysis, silsesquioxane chemistry, and environmentally friendly synthetic methodologies. A highly respected scientist, she has led multiple national and European research projects and mentored doctoral candidates. Her scientific work emphasizes sustainable practices through the use of organocatalysis and mechanochemistry. Dr. Żak is a collaborative researcher, partnering with international and national institutions to expand the frontiers of materials and inorganic chemistry. Her dedication has earned her a place in prestigious scientific networks and journals as a reviewer and contributing author. Through her innovative and impactful work, Dr. Żak exemplifies excellence in chemical research and its practical application.

Professional Profile 

Dr. Patrycja Żak completed her entire academic education at Adam Mickiewicz University in Poznań, Poland, where she laid the foundation for her scientific journey. She earned her Master of Science degree in Chemistry under the supervision of Prof. Marciniec. Continuing under the same mentor, she pursued and successfully defended her Ph.D. in Chemistry , focusing on advanced organometallic systems. Demonstrating a consistent trajectory of academic growth, she achieved her habilitation at the same institution, a significant milestone in European academia reflecting her independent research capabilities and teaching qualifications. Her educational path reflects a deep commitment to chemical sciences, and her studies were grounded in synthetic and structural chemistry, particularly relating to silicon-based compounds and catalysts. This solid academic base has underpinned her research excellence, enabling her to contribute meaningfully to interdisciplinary fields, particularly in developing green and sustainable chemical methods.

Experience 

Dr. Żak has accumulated over 15 years of academic and research experience at Adam Mickiewicz University. She began her professional career as an adjunct faculty member and was promoted to Associate Professor. Her work has been briefly paused due to maternity leaves and a short health-related hiatus, but she returned to academia with renewed vigor. During her tenure, she has taken on roles beyond teaching and research, including supervising doctoral projects and serving on selection commissions for post-doc and master’s program candidates. She has actively contributed to collaborative research with international scientists and led industry-related projects, such as the development of efficient synthesis methods at AdvaChemLab. Her extensive project portfolio includes national grants like OPUS, SONATA, and MAESTRO, where she served as both investigator and principal investigator. These experiences have shaped her as a leader in her field, merging academic excellence with research innovation and mentorship.

Professional Development

Throughout her career, Dr. Żak has consistently engaged in professional development activities to enhance her academic and research contributions. She is a member of the Polish Chemical Society and has served as a reviewer for prestigious journals such as ChemSusChem, Inorganic Chemistry, and ChemCatChem. She also acted as a tutor in Environmental and Material Chemistry and served on several selection commissions for post-doc and master’s program candidates. Dr. Żak participated as an organizing committee member for the 8th European Silicon Days Conference. Internationally, she broadened her expertise through a six-month research exchange under the Socrates-Erasmus Program in Belgium. She continually refines her skills through leading-edge research projects and supervising doctoral candidates. These roles reflect her commitment to staying at the forefront of chemical science, emphasizing collaborative growth, academic integrity, and leadership in research dissemination, all of which have significantly contributed to her development as an esteemed scientist in organometallic and green chemistry.

Skills & Expertise

Dr. Patrycja Żak possesses an extensive skill set that bridges experimental chemistry, project leadership, and academic mentorship. She is highly proficient in organometallic synthesis, catalysis (particularly organocatalysis), and mechanochemical methods, enabling the development of green and efficient chemical transformations. Her expertise includes the design and functionalization of silicon-based nanomaterials such as silsesquioxanes. She has demonstrated strong abilities in analytical characterization techniques, photophysical studies, and collaborative interdisciplinary research. She effectively manages national and European research grants, showcasing organizational and leadership capabilities. In academia, she is skilled in curriculum development, supervising postgraduate students, and contributing to peer review and academic publishing. Furthermore, her role in organizing international conferences and reviewing for high-impact journals highlights her communication and evaluative skills. Her ability to innovate while adhering to sustainability principles marks her as a skilled and future-ready researcher in both academic and applied chemical sciences.

Resarch Focus

Dr. Patrycja Żak’s primary research focus lies at the intersection of Green Chemistry, Organometallic Chemistry, and Material Chemistry. Her work emphasizes the design of environmentally friendly and sustainable synthetic methods using organocatalysis and mechanochemistry. She is particularly focused on eliminating hazardous solvents and toxic metal-based catalysts by developing N-heterocyclic carbene-catalyzed transformations. Her research also targets the synthesis and functionalization of silsesquioxanes and nanomaterials with well-defined thermal and photochemical properties. Additionally, she explores thioester and heterocycle synthesis from unsaturated aldehydes and other functionalized compounds, contributing to the growing demand for sustainable, efficient chemical pathways. The research she leads aligns with cutting-edge themes in chemical sustainability, structure-property relationships in hybrid materials, and catalyst design for selective transformations. Her projects consistently follow the principles of atom economy and eco-compatibility, placing her work firmly within the green and sustainable chemistry category, with wide applications in pharmaceuticals, materials science, and nanotechnology.

Awards & Recognitions

Dr. Żak’s scientific excellence is reflected in her numerous achievements and recognitions. She has published 47 papers in Scopus-indexed journals, with an additional paper accepted and one under minor revision, showcasing consistent high-quality output. Her work has received over 662 citations in Scopus and 527 in Web of Science, with an h-index of 14, signifying both productivity and scholarly impact. She has authored chapters in scientific books and contributed to academic handbooks, such as the “Laboratory Experiments in Basic Inorganic Chemistry.” Moreover, her innovation has led to 16 patents across multiple jurisdictions including the US, EU, China, and Poland. She has also served as project manager and principal investigator for prestigious national projects including SONATA, POMOST, and OPUS. In addition, she plays a pivotal role in guiding doctoral candidates under Poland’s “Initiative of Excellence” programs. These distinctions underline her commitment to impactful, innovative, and globally relevant chemical research.

Publication Top Notes 

Conclusion:

Overall, Dr. Patrycja Żak is an exceptionally strong candidate for the Women Researcher Award. Her impressive academic productivity, innovation in sustainable chemistry, mentorship record, and project leadership clearly match the criteria for recognizing excellence among women in science. Minor enhancements, such as expanding industrial collaborations and increasing policy outreach, could further amplify her profile in the future. Nonetheless, she fully deserves acknowledgment as a role model inspiring future generations of women scientists working toward a greener and more sustainable world.

Rodrigo Luciano | Chemical Engineering | Excellence in Research Award

Mr.Rodrigo Luciano | Chemical Engineering | Excellence in Research Award

Business/Company , Engineer at Braskem in  Brazil.

🔬 Short Biography 🌿💊📚

Rodrigo Almeida Luciano 👨‍🔬 is a dynamic professional in the field of energy and chemical engineering, with a strong background in project coordination and strategic business management. Born in Brazil 🇧🇷, Rodrigo holds a Bachelor’s degree in Energy Engineering ⚡ and a Master’s in Business Administration 🎓, complemented by postgraduate studies in Strategic Business Management. He is currently pursuing his Master’s in Chemical Engineering 🧪 at the Federal University of Rio de Janeiro (UFRJ). With over 7 years of impactful experience at Braskem S.A., Rodrigo has led innovative projects in recycling, biomass, and decarbonization 🌱. His expertise spans agile project management, procurement analysis, and technological innovation with universities and startups. Earlier in his career, he also managed operations at LowCost, demonstrating strong leadership and operational control 💼. Rodrigo is known for his passion for sustainable technologies, technical tools, and data-driven project execution 🧠.

PROFILE 

GOOGLE SCHOLAR

🔍 Summary of Suitability:

Rodrigo Almeida Luciano exemplifies the qualities of a high-impact researcher committed to innovation, sustainability, and scientific excellence. With a multidisciplinary background in chemical and energy engineering, complemented by strategic business training, Rodrigo has demonstrated outstanding leadership in applied research. He is currently leading pioneering industrial projects at Braskem S.A. that integrate circular economy principles, decarbonization technologies, and biomass recycling—all highly relevant to global climate and sustainability goals 🌱. His pursuit of a Master’s in Chemical Engineering alongside his industry work reflects his dedication to bridging theory and practice 🧪.

🔹 Education & Experience 

Rodrigo Almeida Luciano’s academic journey 🎓 began with a Bachelor’s in Sciences and Technology (2017) and Energy Engineering (2020) from the Federal University of ABC. He further enhanced his managerial skills with a postgraduate diploma in Strategic Business Management 🧾 from Mackenzie University (2021), and an MBA in Project Management 📊 from the University of São Paulo (2023). He is now pursuing a Master’s in Chemical Engineering 🧪 at UFRJ, expected in 2025. Rodrigo’s professional journey is marked by over 7 years at Braskem S.A., where he has served as both a Project Engineer 🛠 and Supply Analyst 📈. His role involves leading technological projects focused on recycling and decarbonization. Previously, he spent 4 years at LowCost, where he started as an Operator and advanced to Operations Supervisor 👨‍💼, managing teams and overseeing customer service operations. His technical toolkit includes SAP, Aspen Plus, AutoCAD, VBA, and MATLAB 🧑‍💻.

🔹 Professional Development 

Rodrigo’s professional development 💼 is driven by a strong integration of engineering principles with project management and innovation. He has cultivated expertise through both academic learning and practical industry roles. At Braskem S.A., Rodrigo leads advanced projects focused on recycling, biomass, and decarbonization 🌍, collaborating with universities, startups, and corporate partners. His use of Agile methodologies enables efficient management and innovation in sustainability-driven technologies ⚙️. He has also led the national purchasing category team, automating procurement processes through VBA programming and SAP reporting 🖥️. Rodrigo’s dedication to continuous learning is evident through his pursuit of a Master’s in Chemical Engineering at UFRJ and his completion of an MBA and a postgraduate course in business strategy 📘. Tools like Aspen Plus, MATLAB, and AutoCAD add to his technical versatility 🧪📐. With a balance of leadership, analytical rigor, and environmental foresight, Rodrigo continues to develop as a cutting-edge engineer and project leader 🚀.

🏅 Awards and Recognitions

  • 🎖️ Promoted to Project Engineer at Braskem S.A. after notable performance in supply analysis and category leadership

  • 🥇 Led national procurement transformation using SAP & VBA automation tools

  • 🧪 Selected to lead cutting-edge decarbonization and recycling projects at Braskem

  • 🌍 Recognized internally for driving sustainability initiatives with external innovation partners

  • 📚 Completed prestigious MBA in Project Management at the University of São Paulo (USP)

  • 🔧 Certified expertise in Aspen Plus, AutoCAD, SAP, and VBA for engineering applications

🔬 Research Focus

Rodrigo’s research focus falls within the categories of Sustainable Chemical Engineering 🌱, Renewable Energy Systems ⚡, and Decarbonization Technologies 🌍. As a Master’s student in Chemical Engineering at UFRJ, his academic path supports his real-world role at Braskem, where he spearheads projects related to circular economy, biomass utilization, and advanced recycling methods 🔁. He works closely with startups, research institutions, and internal teams to pilot long-term environmental technologies aimed at reducing carbon footprints 🏭❌. His interest bridges theoretical modeling with practical execution, utilizing tools such as Aspen Plus, MATLAB, and AutoCAD to simulate processes and optimize resource efficiency 📊🔬. Rodrigo’s professional endeavors reflect a commitment to cleaner industrial processes and innovations in energy conversion and waste recovery 🔋♻️. His integration of business management with engineering acumen positions him at the forefront of eco-engineering solutions designed for real-world impact 🌐.

Publications & Citations 📚

📘 “A Survey on the Chemical Recycling of Polyolefins into Monomers” – L Carvalho, G Mattos, N Sitton, J Barros, D Miranda, R Luciano, JC Pinto – Published in 🔬 Processes, 13(7), 2114, 2025 – 📑 Cited by: 0 (as of now) 🧪♻️

📗 “Probing the Role of Calcium Carbonate on Hydrothermal Liquefaction of Polyethylene in the Presence of Supercritical Water” – K Jan, DL Perez, A Patil, RA Luciano, DMV de Miranda, WT Chen – Published in 🧪 Chemical Engineering Journal, 164266, 2025 – 📑 Cited by: 0 🔥♻️

📙 “Utilization of Waste Cooking Oil as Feedstock for Sustainable Research Applications in Alternate Fuel Production” – A Patil, RA Luciano – Presented at 🧬 46th Symposium on Biomaterials, Fuels, and Chemicals (SBFC), 2024 – 📑 Cited by: 0 🍳🔋

🔍 Conclusion:

Rodrigo Almeida Luciano is a strong candidate for the Excellence in Research Award due to his unique integration of academic research and industrial innovation. His work addresses critical environmental challenges, promotes sustainable development, and offers scalable technological solutions. His scientific output, technical competence, and leadership in advanced research projects make him highly deserving of this prestigious recognition 🏅

Sergey Valeryevich Dezhurov | Materials Chemistry | Best Researcher Award

Dr.Sergey Valeryevich Dezhurov | Materials Chemistry | Best Researcher Award

Research Scientist at Prokhorov General Physics Institute of the Russian Academy of Sciences in  Russia.

🔬 Short Biography 🌿💊📚

👨‍🔬 Сергей Валерьевич Дежуров is a seasoned Russian chemist . With over 20 years of experience in the field of chemistry and nanotechnology 🧪, he has contributed significantly to scientific innovation. A graduate of Novosibirsk State University, Faculty of Natural Sciences (1996–2001), he specialized in chemistry and later pursued postgraduate studies in bioorganic chemistry 📘. His professional journey spans roles as a chemistry teacher, synthetic chemist, sales and technical manager, and senior research scientist. Currently affiliated with the Institute of General Physics (IOF RAS) and the Research Institute of Applied Acoustics (NIIPA), he focuses on luminescent materials, quantum dots, bioconjugates, and thin-film technologies 🔬. Sergey is the author of 20+ scientific publications and 4 patents, with deep involvement in international and Russian R&D projects. He is passionate about applying scientific knowledge to create real-world solutions, especially in advanced optics and sensor systems 🌍.

PROFILE 

SCOPUS 

🔍 Summary of Suitability:

Sergey V. Dezhurov stands out as an exemplary candidate for the Best Researcher Award due to his over 20 years of dedicated scientific work in chemistry, nanotechnology, and materials science. His deep expertise in quantum dots, polymer composites, bioorganic chemistry, and optical materials has yielded breakthrough innovations with real-world impact. His experience spans both academic and industrial domains, showcasing versatility, technical depth, and strong leadership in high-tech R&D environments.

🔹 Education & Experience 

🎓 Sergey Dежуров completed his undergraduate studies in chemistry at Novosibirsk State University (1996–2001) and advanced his knowledge through postgraduate studies in bioorganic chemistry and management courses 📚. His career began in education and laboratory roles before progressing into industrial research. Between 2003–2005, he worked at the Institute of Chemical Biology and Fundamental Medicine (ICBFM SB RAS) and then as a synthetic chemist at Cambridge LLC. From 2008 onwards, he held research and leadership roles in high-tech centers such as “Nanotech-Dubna” and NIIPA, focusing on quantum dots, polymeric materials, and optical sensors 🧪. He also contributed to technology commercialization and industrial process optimization. Since 2024, he has been working at the Institute of General Physics (IOF RAS) on thin-film technologies for microdisplays and solar cells 🌞. His versatile experience spans R&D, team leadership, and complex instrumentation, establishing him as an accomplished figure in chemical technology and nanomaterials 🌐.

🔹 Professional Development 

🧑‍🔧 Sergey Dежуров’s professional development reflects a commitment to innovation, multidisciplinary collaboration, and continuous learning. He has mastered a variety of specialized software tools such as ChemOffice, OriginLab, and MultiChrom for analytical and synthetic chemistry applications 💻. His hands-on expertise covers organic and colloidal synthesis, design of thixotropic gels, development of bioconjugates, and surface modification of nanoparticles. He has independently acquired knowledge in optical and analytical instrumentation software and is proficient in spoken English 🌍. Sergey has played key roles in developing fluorescent microspheres for cytometry, FRET-based sensor systems, and new-generation luminescent materials. He led process engineering and team management in pilot production setups, demonstrating both technical and leadership skills 🧑‍🏫. His involvement in national and international grant-funded projects has further refined his strategic research and development abilities, keeping him at the cutting edge of applied chemistry, nanotechnology, and material science 🌟.

🏅 Awards and Recognitions

  • 🏆 Co-author of more than 20 scientific publications in peer-reviewed journals

  • 📚 Author of 4 patents in the field of luminescent materials and quantum dots

  • 🎓 Contributor to national and international research projects and grants

  • 🧪 Developer of innovative sensor systems using quantum dot-based FRET

  • 🔬 Recognized for high-impact research in nano-optical materials and bioconjugates

  • 🗣️ Regular participant and presenter at scientific conferences in Russia and abroad

🔬 Research Focus

🧪 Sergey Dежуров’s research is deeply rooted in nanomaterials chemistry, focusing on quantum dots, luminescent compounds, and advanced polymer systems. His work encompasses organic and colloidal synthesis, photoaffinity labeling of biomolecules, and bioconjugation techniques relevant to diagnostics and life sciences 💡. A key part of his research includes thin-film technologies for applications in microdisplays and solar cells, and the development of sensor systems based on FRET principles. Sergey has also designed high-stability semiconductor colloidal quantum dots and customized surface modifications for nanoparticles, tailoring properties like charge, polarity, and dispersibility ⚗️. His innovations support cutting-edge applications in optical sensing, nanobiotechnology, and materials engineering. By bridging chemistry with device-level implementation, his work contributes to the development of real-world technologies in areas like biosensors, optoelectronics, and photonics 🌈. His ongoing efforts ensure the evolution of intelligent, functional nanomaterials that drive future-oriented scientific solutions.

Publications & Citations 📚

📄 “Effect of combustion air humidification on the operation of a biomass boiler – Theoretical analysis”Heliyon, 2025 | 📅 Published: 2025 | 🔁 Cited by: 0 | ✍️ Authors: Dlouhý, T.; Havlík, J.

📄 “Improving the energy effectivity of biomass drying for utilisation in energy systems by combining convective and contact drying”Drying Technology, 2024 | 📅 Published: 2024 | 🔁 Cited by: 0 | ✍️ Authors: Havlík, J.; Dlouhý, T.

🔍 Conclusion:

With a unique blend of scientific creativity, technological innovation, and sustained impact, Sergey V. Dezhurov exemplifies the core values of the Best Researcher Award. His pioneering work in functional nanomaterials and sensor systems has contributed meaningfully to modern chemistry, nanotech-based diagnostics, and advanced materials engineering. His candidacy reflects excellence, leadership, and a forward-looking vision in scientific research .

RAJESWARAN | PHOTOCATALYSIS | Best Researcher Award

Dr. P.RAJESWARAN | PHOTOCATALYSIS | Best Researcher Award

ASSOCIATE PROFESSOR at VEL TECH HIGH TECH Dr.RANGARAJAN Dr,SAKUNTHALA ENGINEERING COLLEGE,CHENNAI,TAMILNADU,India.

🔬 Short Biography 🌿💊📚

Dr. P. Rajeswaran 🎓 is an accomplished academician and researcher in the field of chemistry, with over 14 years of teaching experience in reputed institutions across Tamil Nadu, India 🇮🇳. Holding a Ph.D. in Chemistry with a specialization in Nanoscience and Nanotechnology 🧪 from Bharathiar University, his academic journey began with B.Sc. and M.Sc. degrees in Chemistry followed by an M.Phil. He is currently serving as Associate Professor of Chemistry at Vel Tech High Tech Engineering College, Chennai 🏫. His passion for research is reflected in over 28 SCI/Scopus-indexed publications 📄, spanning topics like photocatalysis, nanomaterials, and environmental remediation. A dedicated mentor and active R&D coordinator, Dr. Rajeswaran continues to shape the next generation of scientists while driving innovation through sustainable chemistry solutions 🌱🔬.

PROFILE 

GOOGLE SCHOLAR 

🔍 Summary of Suitability:

Dr. P. Rajeswaran is a highly accomplished researcher with over 14 years of academic experience and an exceptional track record in the fields of nanoscience, nanotechnology, and environmental chemistry. Holding a Ph.D. in Chemistry, his scholarly excellence is reflected through his prolific publication record—28 SCI/Scopus-indexed journal papers, over 323 citations, an h-index of 12, and consistent involvement in cutting-edge research. He has also supervised Ph.D. scholars, contributed to institutional research development, and secured internal research funding, underscoring his dedication to both discovery and mentorship.

🔹 Education & Experience 

Dr. Rajeswaran’s academic path is steeped in chemical sciences 🧪. He completed his Ph.D. in Chemistry (Nanoscience and Nanotechnology) from Bharathiar University in 2018 🎓, with earlier degrees including an M.Phil. from Vinayaga Missions University and M.Sc./B.Sc. from NMS.S.V.N. College, Madurai 🎒. With 14.7 years of teaching experience 👨‍🏫, he has served in progressive academic roles—from Assistant Professor at institutions like King College of Technology and Mahendra Engineering College, to Associate Professor at Vel Tech High Tech Engineering College, Chennai 🏢. His practical experience in curriculum delivery, departmental leadership, and research supervision has been instrumental in advancing institutional and student success. As a recognized Ph.D. supervisor under Anna University, his teaching is deeply integrated with ongoing research in nanotechnology and materials science 🧬.

🔹 Professional Development 

Dr. Rajeswaran is consistently engaged in professional development, participating in over 14 national and international conferences, workshops, and training sessions 🧑‍🏫🌍. He has presented and published on advanced topics including photocatalytic nanomaterials, dye-sensitized solar cells ☀️, and eco-friendly synthesis techniques for environmental remediation 🌿. Beyond participation, he has contributed as a coordinator of R&D initiatives and held leadership roles such as Head of Department and Discipline Committee Member 🏅. His dedication to evolving with scientific advancements is evident through his diverse academic collaborations and his role in organizing academic events at Vel Tech High Tech. Additionally, he secured research seed funding 💰 and published a patent on eco-friendly coconut soap formulation 🧼. Dr. Rajeswaran remains at the forefront of academic enrichment through sustained learning and institutional development 📚🔍.

🏅 Awards and Recognitions

  • 🏆 Ph.D. Thesis Highly Commended – Bharathiar University (2018)

  • 🎖️ Institute Seed Money Grant – ₹1,10,000 for DSSC project (2024)

  • 📜 Published Patent – Eco-friendly coconut soap formulation (2022)

  • 🧑‍🏫 Ph.D. Supervisorship – Recognized by Anna University

  • 📈 Citations: 323 | h-index: 12 | i10-index: 14 – Google Scholar Metrics

  • 📝 28 International Journal Publications – SCI/Scopus/WoS indexed

  • 🗣️ Presented at 7+ International/National Conferences – Including on nanomaterials and smart chemistry

  • 🧪 R&D Coordinator – Vel Tech High Tech Engineering College

🔬 Research Focus

Dr. Rajeswaran’s research focus lies primarily in Nanoscience and Nanotechnology 🔬, with applications in environmental remediation, photocatalysis, and energy storage devices 🔋. His doctoral and postdoctoral work centers around the synthesis of pure and doped SnO₂ nanoparticles using microwave-assisted techniques, exploring their structural, optical, and catalytic properties 🌈🧪. He has made notable contributions to green chemistry and sustainable solutions by developing nanomaterials for the degradation of toxic dyes and organic pollutants in wastewater 🌍💧. His work extends to graphene-based hybrid materials for supercapacitors and dye-sensitized solar cells, reflecting his interest in renewable energy systems ☀️⚡. Dr. Rajeswaran’s approach blends experimental chemistry with materials engineering to address pressing environmental and energy challenges through nanotechnology, making his research impactful across both academic and industrial domains 🧠⚙️.

Publications & Citations 📚

  1. 📘 Influence of Mn doping on SnO₂ nanoparticles (gas sensing)43 citations, 🗓️ 2015

  2. 🧪 Chitosan–CeO₂–CuO composites for dye degradation & microbial study38 citations, 🗓️ 2024

  3. 🧫 Mn-doped SnO₂ nanoparticles for Congo red degradation29 citations, 🗓️ 2023

  4. WO₃/Graphene hybrid for solar cells22 citations, 🗓️ 2021

  5. 🔋 NiMoO₄@rGO for asymmetric supercapacitors21 citations, 🗓️ 2023

  6. 💧 Chitosan–ZrO₂–CeO₂ for water remediation20 citations, 🗓️ 2023

  7. 🌞 SnO₂–ZnO heterojunctions for dye & Cr(VI) degradation19 citations, 🗓️ 2024

  8. 💡 SnO₂/CoFe₂O₄ nanocomposite for wastewater treatment19 citations, 🗓️ 2024

  9. 🧬 W⁶⁺ doped SnO₂ nanoparticles (photocatalysis)16 citations, 🗓️ 2016

  10. ☀️ Graphene-modified CeO₂ for DSSCs15 citations, 🗓️ 2020

  11. 🔆 Zn-doped SnO₂ nanoparticles (photocatalytic activity)14 citations, 🗓️ 2015

  12. 🌿 Gelatin–Alginate–CeO₂ hydrogel for biological use13 citations, 🗓️ 2024

  13. 🔋 NiCoP@rGO for asymmetric supercapacitors12 citations, 🗓️ 2023

  14. 🌞 Al₂O₃/Graphene for solar cells via microwave12 citations, 🗓️ 2020

  15. 🔋 NiMn₂O₄@rGO hybrids for supercapacitors10 citations, 🗓️ 2023

🔍 Conclusion:

✅ Dr. P. Rajeswaran is highly suitable for the Best Researcher Award. His sustained contributions to applied nanoscience, environmental remediation, and energy materials, paired with leadership in academia and innovation, make him an exemplary candidate who embodies the spirit of research excellence and societal impact.

Svetlna Ilić| Materials Chemistry| Best Researcher Award

Dr. Svetlna Ilić| Materials Chemistry| Best Researcher Award

Senior Research Associate at Vinča Institute of Nuclear Sciences, University of Belgrade, National Institute of the Republic of Serbia,Serbia.

🔬 Short Biography 🌿💊📚

Dr. Svetlana Ilić is a Senior Research Associate at the Vinča Institute of Nuclear Sciences, part of the University of Belgrade and a national research institute in Serbia. She is affiliated with the Materials Laboratory, where her work focuses on the synthesis, processing, and characterization of nanostructured materials for diverse applications—ranging from energy and mechanical engineering to environmental protection and biomedical uses vinca.rs +1 intranet.vin.bg.ac.rs +1 . Dr. Ilić earned her B.Sc. in Inorganic Chemical Technology from the University of Belgrade (2008) and completed her Ph.D. (2018) at the same institution, specializing in sol–gel synthesis and characterization of iron‑doped mullite . Her current research includes developing modified clay separation media, porous semiconductors, oxide-based ceramics, and catalytic filters for diesel particulate removal

PROFILE 

ORCID

Scopus

🔍 Summary of Suitability:

Dr. Svetlana Ilić is a dedicated and accomplished researcher with impactful contributions to ceramic materials science. Her focus on sustainable and functional ceramics derived from natural or waste sources demonstrates her commitment to practical solutions in energy and environmental applications. She also exemplifies academic responsibility through reviewer and editorial roles and active collaboration in European research networks.

🎓 Education

Dr. Svetlana Ilić completed both her Bachelor of Science (BSc) and Doctor of Philosophy (PhD) degrees at the Faculty of Technology and Metallurgy, University of Belgrade, Serbia 🇷🇸. Her academic training laid a strong foundation in materials science, particularly in ceramic processing, powder metallurgy, and advanced characterization techniques. This comprehensive education has been instrumental in shaping her successful research career in functional ceramics and nanomaterials.

🧪 Experience

Since February 1, 2011, Dr. Ilić has been serving as a Senior Research Associate at the Department of Materials, Vinča Institute of Nuclear Sciences, University of Belgrade 🔬. Her work focuses on the synthesis and consolidation of pure and doped mullite powders, development of dense and porous ceramics, and the utilization of natural raw materials for ceramic production. She is highly skilled in structural, microstructural, and mechanical characterization techniques including XRD, SEM, Mössbauer spectroscopy, and nanoindentation. Over the years, she has participated in multiple national and international projects related to refractory materials, LTCC materials, thermal insulators, and porous ceramic structures.

🛠️ Skills

Dr. Ilić possesses a versatile set of technical and soft skills. Technically, she is proficient in advanced materials synthesis and characterization methods. She demonstrates high competency in using tools like XRD, SEM, nanoindentation, and spectroscopy. In addition to her experimental expertise, she is highly organized, responsible, and an effective communicator. She is fluent in Serbian and proficient in English, and adept in Microsoft Office, Google Drive, and various digital research platforms. Her collaborative spirit, adaptability, and willingness to learn make her a valuable member of interdisciplinary research teams.

🏅 Awards and Recognitions

Dr. Ilić’s scientific excellence is reflected through her active involvement in editorial and peer review activities. She served as a Guest Editor for Metallurgical and Materials Data between April and July 2024 and has reviewed articles for prestigious journals including the Journal of the American Ceramic Society, Journal of the European Ceramic Society, and Ceramics International. Her contributions as a reviewer and editor underscore her expertise and respected position in the ceramic science community, even though specific awards are not listed.

🔬 Research Focus

Dr. Ilić’s research is primarily centered on the synthesis, processing, and characterization of nanostructured and ceramic materials for applications in energy, environmental protection, and mechanical systems. She specializes in mullite-based ceramics—both dense and porous—as well as in the development of refractory and insulating materials from natural and waste sources. Her recent work includes modifying porous ceramics with nano-additives for improved catalytic performance, studying the magnetic properties of self-assembled graphene films, and developing materials for wastewater treatment and diesel particulate filtration. Her involvement in European COST Actions and multidisciplinary projects highlights her commitment to sustainable materials science and applied research.

Publications & Citations 📚

  • Ilić, S., Maletaškić, J., Skoko, Ž., Vuksanović, M. M., Radovanović, Ž., Ristović, I., & Šaponjić, A. (2025). Utilization of waste clay–diatomite in the production of durable mullite-based insulating materials. Applied Sciences, 15(13), 7512. https://doi.org/10.3390/app15137512

  • Savić, A., Vuksanović, M. M., Savić, M., Knežević, N., Šaponjić, A., Ilić, S., & Egelja, A. (2025). Modified silica particles coated with Cu–Al layered double hydroxide for phosphate and arsenate removal in water treatment. Molecules, 30(10), 2138. https://doi.org/10.3390/molecules30102138

  • Ilic, S., Šaponjić, A., Ivanovski, N. V., Posarac-Marković, M., Kokunesoski, M., Janacković, D., & Devecerski, A. (2024). Influence of iron on the mullite formation. Science of Sintering, 56(4), 425–438. https://doi.org/10.2298/SOS240425017I

  • Posarac-Marković, M., Jovic Orsini, N., Ilic, S., Kuzmanovic, M., Šaponjić, A., Radovanović, Z., & Matović, B. (2024). Structural and morphological studies on yttrium-doped magnesium aluminate spinel powders synthesized by mixed-fuel solution combustion synthesis approach. Science of Sintering, 56(8), 821–836. https://doi.org/10.2298/SOS240821036P

  • Ružić, J., Maletaškić, J., Radovanović, Ž., & Ilić, S. (2024). Mechanical properties of mullite investigated by nanoindentation. Metallurgical and Materials Data, 29, Article 29. https://doi.org/10.30544/MMD29

  • Kokunesoski, M., Janacković, D., Kićević, D., Ilic, S., & Šaponjić, A. (2023). The effect of acrylate on the properties and machinability of alumina ceramics. Science of Sintering, 55(1), 103–115. https://doi.org/10.2298/SOS2301103K

🔍 Conclusion:

Highly suitable for the Best Researcher Award. Dr. Ilić combines scientific excellence, sustained productivity, community service, and innovation. She stands out as a role model in applied materials research and is poised to make further significant contributions on a global scale with continued support and recognition.

Miriam Sánchez Ordóñez | Sustainability and natural ingredients | Young Researcher Award

Ms. Miriam Sánchez Ordóñez | Sustainability and natural ingredients | Young Researcher Award

PhD student at Centro de investigaciones científicas y Tecnológicas de Extremadura . , Spain.

🔬 Short Biography 🌿💊📚

Miriam Sánchez Ordóñez 🎓, born in Madrid, Spain 🇪🇸, is a passionate pre-doctoral researcher at the Agri-Food Technological Institute of Extremadura (INTAEX), currently working under the CICYTEX research center 🧪. With a strong academic foundation in Food Science and Technology 🍎 from the University of Extremadura and an award-winning master’s specialization in food traceability 🌿, Miriam has carved a niche in sustainable food innovation. Her contributions to high-impact research on meat products, by-product utilization, and circular economy solutions are evident in her 8 international publications, 4 as corresponding author 📚. Through various competitive R&D projects, she explores bioactive packaging and alternative preservation techniques. Her proactive participation in conferences, combined with an unyielding commitment to agri-food sustainability 🌍, highlights her growing impact in agricultural sciences. Miriam is a promising scientist driven by a vision of healthier, more sustainable food systems. 🍖♻️

PROFILE 

ORCID

SCOPUS  

🔍 Summary of Suitability:

Miriam Sánchez Ordóñez exemplifies the qualities of a high-potential early-career scientist 👩‍🔬. At just 30 years old, she has already demonstrated academic excellence, research leadership, and innovative thinking in the field of Food Science and Technology. With honors distinctions in both her bachelor’s and master’s degrees from the University of Extremadura, she is currently pursuing her Ph.D. through a competitive pre-doctoral fellowship granted by the Ministry of Science and Innovation 🇪🇸. Her dynamic involvement in cutting-edge R&D projects, including AGROSUSTMEAT and SMARTCURING, shows her drive to bridge sustainability and applied food innovation.

📘 Education & Experience

Miriam earned her degree in Food Science and Technology 🎓 from the University of Extremadura in 2017, graduating with honors 🏅. She further pursued a master’s in Management and Traceability of Food of Plant Origin in 2020, again achieving distinction 🥇. Her academic journey laid the groundwork for her Ph.D. in Food Science and Technology, supported by the Ministry of Science and Innovation under the PRE2021-097662 grant 📘. Professionally, Miriam has held roles in quality control and laboratory analysis 🧫 at Laban Laboratories, TOMALIA S.C.U., Crown, and Olives & Pickles 🧪. Since 2022, she has served full-time as a pre-doctoral researcher at INTAEX-CICYTEX, engaging in cutting-edge research on sustainable meat preservation technologies 🥩. With hands-on experience in R&D projects and publications in top-tier journals, her trajectory is marked by consistent academic excellence and practical expertise in food science and agri-food innovation. 🌽👩‍🔬

📈 Professional Development

Miriam Sánchez Ordóñez’s professional development is anchored in a blend of academic rigor 📚 and applied research innovation 🔬. As a full-time pre-doctoral researcher at CICYTEX, she has actively contributed to high-level R&D projects such as AGROSUSTMEAT and SMARTCURING, addressing sustainability, traceability, and meat product enhancement 🥓. Her roles have involved physical-chemical analysis, sensor technology applications, and data analytics 📊. She regularly presents at international conferences like INCONUBI and EFFoST, broadening her scientific network 🌐 and refining her communication skills. As a corresponding author on several peer-reviewed articles, she demonstrates leadership in disseminating research findings ✍️. Through these efforts, she’s gaining expertise in bioactive packaging, by-product valorization, and novel food preservation strategies 💡. Miriam also actively collaborates with cross-disciplinary teams, boosting her adaptability and collaborative skills, key traits for a modern agri-food technologist 👩‍🔬. Her continuous learning journey reflects her drive to innovate and elevate sustainable food systems. 🌿

Research Focus 🔍🤖

Miriam’s primary research area centers on agricultural and food sciences, with a strong emphasis on sustainable meat technology and circular economy practices ♻️🥩. She investigates the valorization of by-products from the local agri-food industry for meat preservation, aiming to reduce waste and develop bioactive packaging solutions 🧴🍇. Her Ph.D. project within the AGROSUSTMEAT initiative focuses on integrating natural ingredients—like grape pomace, red pepper, and plums—into meat products to extend shelf life and enhance nutritional value 🌶️🍑. Miriam is also involved in the SMARTCURING project, which combines sensorization and data modeling to optimize ham curing processes using big data and predictive analytics 📡📈. She explores high-pressure processing and near-infrared spectroscopy (NIR) as innovative tools for product authentication and quality control 📷. Her multidisciplinary approach addresses food safety, quality, and sustainability, aligning with modern challenges in food production and consumer health 🥗🌍.

Awards and Honors 🏆🎖️

  • 🏅 Honors Degree in Bachelor’s Thesis, Food Science and Technology (University of Extremadura)

  • 🎖️ Honors Degree in Master’s Thesis on Plant-Based Food Traceability

  • 🧑‍🔬 Pre-doctoral Grant Recipient (PRE2021-097662) from the Ministry of Science and Innovation

  • 📚 Corresponding Author for 4 high-impact international scientific journal articles

  • 🗣️ Invited Speaker/Presenter at top international conferences (INCONUBI, EFFoST, CYTA-CESIA)

  • 📝 Co-author of 8 Scientific Publications in indexed journals

  • 🌍 Contributor to major EU and nationally funded agri-food R&D projects

Publications & Citations 📚

  1. 📅 2024 – Development of a functional ingredient from grape pomace for the preservation of pork burgers 🍇🍔 – Nutrients – 📑 Cited by: N/A

  2. 📅 2024 – Effect of High Hydrostatic Pressure (HHP) treatments for the valuation of red pepper by-products 🌶️💧 – Nutrients – 📑 Cited by: N/A

  3. 📅 2024 – Valorisation of plums to obtain bioactive compounds 🍑🧪 – Nutrients – 📑 Cited by: N/A

  4. 📅 2022 – Sensory evaluation of goat burgers with cherry (var. Pico negro) 🐐🍒 – Eurocarne – 📑 Cited by: N/A

  5. 📅 2022 – Physicochemical and sensory properties of Iberian lomito 🐖🥩 – Livestock Science (Elsevier) – 📑 Cited by: N/A

  6. 📅 2022 – Use of Near Infrared Spectroscopy for pork loin authentication 🔬🐖 – AIDA-ITEA – 📑 Cited by: N/A

  7. 📅 2022 – Classification of lamb burgers with cherry via NIR 🍒🐑 – Applied Food Research (Elsevier) – 📑 Cited by: N/A

  8. 📅 2021 – Effects of pre-cure freezing on Iberian lomito quality ❄️🥩 – Foods (MDPI) – 📑 Cited by: N/A

🔍 Conclusion:

Miriam Sánchez Ordóñez is a compelling candidate for the Young Researcher Award, standing out for her scientific rigor, innovation in food sustainability, and publication achievements at an early career stage 📈. Her impactful research, international exposure, and vision for sustainable agri-food systems align with the award’s goal of recognizing rising stars in science. With a rapidly growing academic profile, she is poised to become a leader in the global food technology and sustainability arena 🌍.

Prof. Jinhui Zhao| Environmental Chemistry| Best Researcher Award

Prof. Jinhui Zhao| Environmental Chemistry| Best Researcher Award

Director of the Research Institute at Nanjing Tech University, China.

🔬 Short Biography 🌿💊📚

Dr. Jinhui Zhao is an Associate Professor at Nanjing Tech University specializing in environmental chemistry and water treatment technologies. With a Ph.D. in Environmental Engineering, he has published over 50 research articles, including 15 SCI-indexed papers, and holds 10 patents related to pollutant removal and sustainable water systems. His work focuses on the migration and transformation of contaminants in aquatic environments and the development of eco-friendly treatment methods. Dr. Zhao has led multiple national and industrial research projects and actively contributes to innovative solutions for global environmental challenges.

PROFILE 

ORCID 

SCOPUS 

🔍 Summary of Suitability:

Dr. Zhao Jinhui stands out as an applied environmental scientist with impactful research on water treatment technologies and pollutant migration. His work bridges environmental chemistry, public health, and sustainable engineering. His integration of theory with practical applications and industry relevance marks him as a leader in his field. With publications, patents, awards, and high-profile collaborations, he demonstrates a robust and balanced academic profile.

📘 Education

Professor Zhao Jinhui holds a solid academic foundation in environmental and chemical engineering sciences, which has guided his path into research and higher education. He has pursued advanced training in water environmental chemistry and related technologies, which laid the groundwork for his specialization in pollutant behavior and water resource management. His educational background also supports his active role in publishing professional books and developing technical standards in environmental science. This comprehensive academic journey has been instrumental in shaping his expertise in water treatment and sustainability.

Professional Experience

With over a decade of professional and academic experience, Professor Zhao serves as an Associate Professor at Nanjing Tech University. He has led five research projects and completed more than 60 consultancy and industry collaborations, particularly focusing on water treatment, reclaimed water utilization, and pollutant migration. Zhao’s practical expertise extends beyond academia, demonstrated through his leadership in large-scale projects such as those under China’s 863 Program. His innovations have translated into real-world applications, especially in the implementation of constructed wetland technologies for wastewater treatment and power generation, solidifying his role as a leader in applied environmental research.

Skills and Competencies

Zhao Jinhui’s key skills include water quality analysis, advanced water treatment technologies, pollutant migration modeling, and constructed wetlands optimization. His ability to bridge chemical engineering principles with biological systems sets him apart in environmental sustainability research. He also exhibits strong project management and consultancy skills, having led high-impact industry collaborations.

Research Focus 🔍🤖

Professor Zhao Jinhui’s research centers on water environmental chemistry, with a strong emphasis on sustainable water treatment technologies and pollutant behavior in aquatic systems. He investigates the recycling and reuse of reclaimed water and rainwater, aiming to improve water security and environmental protection. A major aspect of his work involves studying the migration and transformation of organic and inorganic pollutants during various treatment processes, including advanced oxidation and constructed wetlands. His interdisciplinary approach combines chemical, biological, and engineering techniques to enhance pollutant removal efficiency while promoting eco-friendly practices. Zhao’s research contributes significantly to water sustainability and green innovation.

Awards and Honors 🏆🎖️

Zhao received the Third Prize in Science and Technology from the China General Chamber of Commerce for his contributions to constructed wetlands for wastewater treatment and energy generation. His applied research has significantly influenced environmental engineering practices in China.

Publications & Citations 📚

  1. Title: Comparison of Field Infiltration Test Methods for Permeable Pavement: Toward a Further Easy and Accurate Method
    Journal: Clean – Soil, Air, Water
    DOI: 10.1002/clen.201900174
    Authors: Zhao, Jinhui
    Year: 2019

  2. Title: Water and energy saving potential by adopting pressure-reducing measures in high-rise building: A case analysis
    Journal: Building Services Engineering Research and Technology
    DOI: 10.1177/0143624417751056
    Authors: Zhao, Jinhui
    Year: 2018

  3. Title: A fancy eco-compatible wastewater treatment system: Green Bio-sorption Reactor
    Journal: Bioresource Technology
    DOI: 10.1016/j.biortech.2017.03.037
    Authors: Zhao, Y.; Liu, R.; Zhao, J.; Xu, L.; Sibille, C.
    Year: 2017

  4. Title: Advanced treatment of actual textile dye wastewater by Fenton-flocculation process
    Journal: Canadian Journal of Chemical Engineering
    DOI: 10.1002/cjce.22752
    Authors: Xiao, X.; Sun, Y.; Sun, W.; Shen, H.; Zheng, H.; Xu, Y.; Zhao, J.; Wu, H.; Liu, C.
    Year: 2017

  5. Title: Constructed wetland integrated microbial fuel cell system: Looking back, moving forward
    Journal: Water Science and Technology
    DOI: 10.2166/wst.2017.190
    Authors: Wang, Y.; Zhao, Y.; Xu, L.; Wang, W.; Doherty, L.; Tang, C.; Ren, B.; Zhao, J.
    Year: 2017

  6. Title: Embedding constructed wetland in sequencing batch reactor for enhancing nutrients removal: A comparative evaluation
    Journal: Journal of Environmental Management
    DOI: 10.1016/j.jenvman.2017.01.080
    Authors: Liu, R.; Zhao, Y.; Zhao, J.; Xu, L.; Sibille, C.
    Year: 2017

  7. Title: Agricultural runoff pollution control by a grassed swales coupled with wetland detention ponds system: A case study in Taihu Basin, China
    Journal: Environmental Science and Pollution Research
    DOI: 10.1007/s11356-016-6150-2
    Authors: Zhao, J.; Zhao, Y.; Zhao, X.; Jiang, C.
    Year: 2016

  8. Title: Highway runoff treatment by hybrid adsorptive media-baffled subsurface flow constructed wetland
    Journal: Ecological Engineering
    DOI: 10.1016/j.ecoleng.2016.02.020
    Authors: Zhao, J.; Zhao, Y.; Xu, Z.; Doherty, L.; Liu, R.
    Year: 2016

  9. Title: UV/TiO₂ photocatalytic disinfection of carbon-bacteria complexes in activated carbon-filtered water: Laboratory and pilot-scale investigation
    Journal: Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering
    DOI: 10.1080/10934529.2015.1055155
    Authors: Zhao, J.H.; Chen, W.; Zhao, Y.; Liu, C.; Liu, R.
    Year: 2015

🔍 Conclusion:

Highly suitable for the Best Researcher Award. Dr. Zhao’s contributions in environmental chemistry and sustainable water systems have tangible societal benefits and scientific depth. Strategic international engagement and editorial roles would further amplify his already strong research trajectory.