Jeffrey Amelse | Environmental Chemistry | Best Researcher Award

Dr. Jeffrey Amelse | Environmental Chemistry | Best Researcher Award

Invited Contributor at University of Aveiro, Portugal

Dr. Jeffrey A. Amelse is an accomplished chemical engineer, researcher, and educator with a distinguished career spanning academia and industry. He earned his Ph.D. in Chemical Engineering from Northwestern University and went on to make significant contributions to catalysis, molecular sieves, petrochemical process design, and carbon sequestration technologies. With over three decades at BP Amoco Chemical Company, he played a pivotal role in developing and commercializing advanced paraxylene technologies, molecular sieve catalysts, and innovative process designs that remain influential in the petrochemical sector. Following his industrial career, he transitioned to academia as an Invited Teaching Professor at the University of Aveiro in Portugal, where he continues to shape the future of energy, catalysis, and sustainability through teaching and research. Currently, as Lead Scientist at Carbon Sequestration, Inc., he pioneers low-cost, natural methods for carbon dioxide removal. His legacy reflects a rare blend of industrial leadership, academic excellence, and innovation.

Professional Profile 

Dr. Amelse’s academic foundation in chemical engineering is marked by rigorous training and a passion for applied research. He earned his Bachelor of Science in Chemical Engineering from the University of Illinois at Urbana-Champaign. He then pursued graduate studies at Northwestern University, obtaining his Master of Science in Chemical Engineering followed by a Ph.D. His doctoral research, under Professors John Butt and Lyle Schwartz, focused on “Silica Supported Iron Bimetallic Catalysts for the Fischer-Tropsch Synthesis,” combining catalyst characterization with performance evaluation—a project that reflected his early interest in bridging fundamental chemistry with industrial applications. Beyond formal degrees, he pursued numerous continuing education courses throughout his career, covering refining, petrochemicals, and biofuels. This extensive educational background not only equipped him with technical expertise but also laid the groundwork for his later innovations in catalysis, petrochemical processes, and sustainable energy technologies, enabling him to contribute across academia and industry.

Experience 

Dr. Amelse’s professional journey integrates high-level industrial leadership, academic teaching, and cutting-edge research. At BP Amoco Chemical Company, he was a core team member in designing world-scale paraxylene crystallization units, developing next-generation catalysts, and leading U.S. Department of Energy–sponsored projects on ammonia absorption refrigeration. He also guided international collaborations, including projects in Belgium, India, Portugal, and the UK, making significant contributions to global petrochemical technology. After retiring from BP Amoco, he joined the University of Aveiro as an Invited Teaching Professor, lecturing on biofuels, refining, and petrochemicals while contributing to molecular sieve research using solid-state NMR. Currently, he serves as Lead Scientist at Carbon Sequestration, Inc., leading commercialization of woody biomass burial for carbon dioxide removal. His experience highlights a career that bridges innovation, teaching, and sustainability, demonstrating his ability to drive transformative advances across both industrial and academic landscapes.

Professional Development

Throughout his career, Dr. Amelse actively pursued professional development to remain at the forefront of chemical engineering and energy research. At BP Amoco, he became a trained leader in HAZOP and LOPA safety analysis techniques, guiding critical plant safety design studies. He also served as an instructor for internal technical courses on paraxylene catalysis and process technologies, reflecting his commitment to knowledge transfer within industry. His collaborations with leading universities, including Cambridge University and the University of Aveiro, provided opportunities to mentor graduate students and postdoctoral researchers, strengthening academia-industry ties. More recently, he expanded his expertise into renewable energy and climate solutions, developing a micro-module on Global Warming, Renewable Energy, and Decarbonization for the European Consortium of Innovative Universities. His continual engagement with new technologies, from biofuels to biomass carbon sequestration, exemplifies lifelong learning and adaptation. This pursuit of professional growth underscores his leadership in advancing energy innovation and sustainability.

Skills & Expertise

Dr. Amelse possesses a rare combination of technical, analytical, and leadership skills in catalysis, process design, and sustainable energy solutions. He is recognized as an expert in molecular sieve synthesis and characterization, having applied advanced techniques such as solid-state NMR to study catalytic materials. His proficiency in ASPEN process simulation and HTRI heat exchanger design software enabled him to lead complex petrochemical process designs with strong economic and technical insight. He also has deep expertise in the aromatics marketplace, including paraxylene process technologies, competitive benchmarking, and licensing strategies. In addition to technical mastery, he is skilled in safety leadership through HAZOP and LOPA methodologies, ensuring safe and efficient operations. His teaching and mentoring roles highlight his ability to translate complex scientific concepts into practical applications. Today, his expertise extends into biomass burial technologies for carbon sequestration, making him a versatile innovator in both conventional petrochemicals and emerging sustainable energy fields.

Resarch Focus

Dr. Amelse’s research has consistently advanced the frontiers of catalysis, petrochemicals, and sustainable energy. His early work focused on catalyst development and reactor modeling for xylene isomerization and paraxylene production, where he pioneered molecular sieve catalyst characterization and design methodologies still in use today. He contributed to the development of novel catalysts for dehydrogenation, transalkylation, and isomerization processes, resulting in patents that improved energy efficiency and selectivity in petrochemical operations. In academia, his research shifted toward renewable energy, exploring biofuels from cellulosic biomass and molecular sieve applications in green chemistry. Currently, his focus lies in carbon sequestration, specifically the commercialization of woody biomass burial as a low-cost and natural method for carbon dioxide removal. His work also explores catalytic oxidation of biomethane and novel bio-aromatic conversion processes. By integrating catalysis, process design, and climate solutions, his research exemplifies innovation at the intersection of chemical engineering and sustainability.

Awards & Recognitions

Dr. Amelse’s career achievements have been recognized through numerous grants, patents, and scholarly contributions. While at BP Amoco, he received special grants from the Head of Technology and the Distributed Research Laboratory to sponsor advanced academic collaborations at the University of Aveiro and Cambridge University. His patents—spanning paraxylene recovery, catalyst design, refrigeration systems, and biomass conversion—demonstrate his innovation and impact, with technologies implemented at industrial scale. His process for recovering germanium from optical fiber effluents, developed at Bell Labs, was notable enough to be featured in The New York Times. In academia, his contributions to climate education were recognized through his development of a European Consortium module on global warming and sustainability. His publications in leading journals, chapters in Industrial Arene Chemistry, and invited lectures further highlight his influence. Collectively, these recognitions underscore his reputation as a pioneering researcher, mentor, and innovator in chemical engineering and sustainability.

Publication Top Notes 

Title: A European Consortium of Innovative Universities Micromodule on Global Warming, Renewable Energy, and Decarbonization
Authors: J.A. Amelse
Year: 2025

Title: Terrestrial Storage of Biomass (Biomass Burial): A Natural, Carbon-Efficient, and Low-Cost Method for Removing CO₂ from Air
Authors: J.A. Amelse
Year: 2025

Title: BP/Amoco Paraxylene Crystallization Technology
Authors: J.A. Amelse
Year: 2023

Title: Reactions and Mechanisms of Xylene Isomerization and Related Processes
Authors: J.A. Amelse
Year: 2023

Title: Sequestering Biomass for Natural, Carbon Efficient, and Low-Cost Direct Air Capture of Carbon Dioxide
Authors: J.A. Amelse, P.K. Behrens
Year: 2022

Dr. Amelse is a highly deserving candidate for the Best Researcher Award. His lifelong contributions to catalysis, petrochemicals, renewable energy, and carbon sequestration reflect both depth and breadth of expertise. His patents and publications demonstrate originality and industrial impact, while his teaching and mentoring underscore his role in shaping future scientists. Although further visibility of his research impact metrics (citations, h-index) and a stronger articulation of future directions could enhance his case, his record already places him among the leading researchers globally.

Thompson Faraday Ediagbonya | Environmental Chemistry | Excellence in Innovation Award

Prof. Thompson Faraday Ediagbonya | Environmental Chemistry | Excellence in Innovation Award

Professor at Olusegun Agagu University of Science and Technology in Nigeria.

Dr. Thompson Faraday Ediagbonya 🎓, an Associate Professor of Environmental Chemistry at OAUSTECH, Nigeria 🇳🇬, is a distinguished scholar with a Ph.D. in Environmental Chemistry and over 50 scientific publications 📚. With teaching experience spanning two decades, his expertise lies in pollution studies, risk assessment, and environmental impact analysis 🌍🧪. He has received awards such as Best Lecturer by the Chemical Society of Nigeria 🏆 and secured prestigious grants, including DAAD and Max Planck Institute scholarships 🌐💼. Beyond academia, he actively mentors postgraduate students and contributes to environmental research and policy. He enjoys reading, football, table tennis, and atmospheric music ⚽📖🎶.

Professional Profile

GOOGLE SCHOLAR 

SCOPUS 

🔍 Summary of Suitability:

Dr. Ediagbonya is a visionary scholar whose work bridges environmental science and public health. He has pioneered analytical approaches to assess the risks of environmental pollutants such as PAHs, PCBs, and heavy metals using advanced tools like GC-MS and ICP-OES 🔬. His studies on atmospheric pollutants, water safety, and ecosystem health have contributed to national and international environmental policies 🌍📈.

🎓 Educational Background

  • 🏫 Primary School: Obanosa Primary School, Benin City (1980–1986)

  • 🏫 Secondary School: Ihogbe College, Benin City (1986–1992)

  • 🏫 Secondary School: Step-forward Secondary School, Warri (1992–1993)

  • 🧪 B.Sc. (Ed) Chemistry: University of Benin (1995–1999)

  • 💻 Diploma in Computer Studies: Obafemi Awolowo University Consultancy Services (2000–2001)

  • ⚗️ M.Sc. in Analytical & Environmental Chemistry: University of Benin (2002–2005)

  • 🌍 Ph.D. in Environmental Chemistry: University of Benin (2006–2011)

👨‍🏫 Professional Experience

🏛️ University Level (OAUSTECH)

  • 👨‍🔬 Lecturer II, Industrial Chemistry (2013)

  • 📘 Lecturer I, Industrial Chemistry (2016)

  • 📗 Senior Lecturer, Industrial Chemistry (2019)

  • 🎓 Associate Professor, Chemical Sciences (2022–Present)

  • 🧑‍🎓 Sub Dean, School of Science (2024–Present)

  • 👨‍💼 Acting HOD, Department of Chemical Sciences (2024–Present)

🏫 Teaching (Outside University)

  • 👨‍🏫 Chemistry Teacher, Imaguero Grammar School (1997–1998)

  • 👨‍🏫 NYSC Teacher, Irabeji Grammar School (2000–2001)

  • 👨‍🏫 Royal College, Ovwian (2001–2009)

  • 🧪 Practical Demonstrator, University of Benin (2008–2010)

  • 👨‍🏫 Jenny College, Ekete (2010–2012)

  • 👨‍🏫 Lecturer II, Western Delta University (2012–2013)

🌍 Research & Assessments

  • 🧪 Environmental Impact Assessments (EIA)

  • 💧 Health Impact Assessments (HIA) for SPDC, NNPC & others

  • 🔬 Numerous international and national environmental studies

Professional Development 🚀📖

Dr. Thompson Faraday Ediagbonya 📘 has demonstrated remarkable professional development through decades of academic excellence and environmental research 🌍🧪. Rising from a dedicated Chemistry teacher to an Associate Professor at OAUSTECH 🎓, he has contributed significantly to pollution analysis, environmental risk assessment, and sustainable practices 💧🌿. A recipient of the DAAD Staff Exchange Scholarship 🇩🇪 and international grants, he has attended numerous conferences, presented impactful research 📊, and published over 50 scientific papers 📚. As a mentor and postgraduate supervisor 👨‍🏫, his role in shaping future scientists is commendable. His professional growth reflects dedication, innovation, and global environmental advocacy 🌐🔥.

Research Focus 🔍🤖

Dr. Thompson Faraday Ediagbonya’s research focus centers on Environmental Chemistry and Pollution Studies 🌍🧪. His work explores air and water quality, heavy metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and greenhouse gases 🌫️💧🌡️. He conducts risk assessments to evaluate environmental and human health impacts 🧬⚠️, particularly in industrial and coastal regions. His studies utilize advanced analytical techniques like GC-MS and ICP-OES 🔬📈. Committed to sustainability, he investigates climate change, rainwater harvesting, and ecosystem protection 🌦️🌱. His research supports cleaner environments and informed policies, contributing to global environmental safety and public health awareness 🧑‍🔬📉🌐.

🏆 Awards & Honors
  • 🥇 Best Lecturer Award – Chemical Society of Nigeria (OAUSTECH), 2021

  • 🏅 Students’ Favourite Lecturer – Chemical Society of Nigeria (OAUSTECH), 2018

  • 🧪 Best Chemistry Teacher – Royal Colleges, Ovwian, Delta State, 2007

  • 🎓 DAAD Staff-Exchange Scholarship – Germany 🇩🇪, 2021

  • 🌍 International Research Grant – Max Planck Institute for Chemistry, Germany 🇩🇪 (2020, €26,676)

  • 📚 TETFund National Research Grants – Nigeria 🇳🇬 (3-time recipient)

Publications & Citations 📚

📘 Occupational exposure to wood dust and respiratory health status of sawmill workers in South-south Nigeria – Tobin EA, Ediagbonya TF et al. | J Pollut Eff Cont | 51 citations | 📅 2016 🌳🫁

💧 Assessment of rain water harvesting systems in a rural community of Edo State, Nigeria – Tobin EA, Ediagbonya TF et al. | Journal of Public Health | 31 citations | 📅 2013 🌦️🏞️

🌫️ Sequential extractions and toxicity potential of trace metals absorbed into airborne particles in an urban atmosphere of Southwestern Nigeria – Olumayede EG, Ediagbonya TF | Scientific World J | 30 citations | 📅 2018 🏙️☠️

💦 Identification and quantification of heavy metals, coliforms and anions in water bodies using enrichment factors – Ediagbonya TF et al. | J Environ Anal Chem | 23 citations | 📅 2015 🚱🧪

🌾 Spatio-temporal distribution of inhalable and respirable particulate matter in rural atmosphere of Nigeria – Ukpebor EE, Ediagbonya TF et al. | IAEES | 22 citations | 📅 2013 🌬️🏡

🧭 Potential risk assessment and spatial distribution of elemental concentrations in sediment – Ediagbonya TF, Balogun OT | Applied Water Science | 17 citations | 📅 2020 🧪🌍

🐟 Comparative analysis of some metallic elements in selected body part of fishes from Igbokoda River – Ediagbonya TF et al. | Results in Chemistry | 17 citations | 📅 2020 🐠⚗️

🧱 Risk assessment and elemental quantification of anthropogenic activities in soil – Ediagbonya TF, Ajayi S | Environ Geochem Health | 15 citations | 📅 2021 🌍🔬

🏙️ Air pollution and respiratory morbidity in an urban area of Nigeria – Ediagbonya TF, Tobin AE | Greener J Environ Manag | 15 citations | 📅 2013 🚗💨

🪵 The level of suspended particulate matter in wood industry (sawmills) in Benin City, Nigeria – Ediagbonya TF et al. | J Environ Chem Ecotoxicol | 13 citations | 📅 2013 🪚🌫️

🌍 Comparative study of TSP, inhalable and respirable particles in Niger Delta – Ediagbonya TF et al. | Greener J Phys Sci | 13 citations | 📅 2012 🏞️💨

🐸 Bioaccumulation of elemental concentrations in sediment and frog (Pyxicephalus edulis) – Ediagbonya TF et al. | Chemistry Africa | 12 citations | 📅 2022 🐸⚛️

⛏️ Effect of quarry activities on biological resources around quarry site in Oyo State – Ediagbonya TF et al. | Environ Geochem Health | 12 citations | 📅 2021 🌿🪨

🌊 Geochemistry of terrigenous sediments in surface water from Ore and Okitipupa – Ediagbonya TF, Ayedun H | Bangladesh J Sci Ind Res | 12 citations | 📅 2018 🧬💧

🧲 Enrichment factor of atmospheric trace metals using reference elements – Ediagbonya TF | Nigerian Journal of Technology | 12 citations | 📅 2016 🔍📈

🌫️ Heavy metal in inhalable and respirable particles in urban atmosphere – Ediagbonya TF et al. | Environ Skeptics and Critics | 12 citations | 📅 2013 🌁🧪

😷 Prevalence of respiratory symptoms due to particulate matter in Niger Delta – Ediagbonya TF et al. | Biol & Environ Sci J Tropics | 11 citations | 📅 2014 🫁🌿

 🔍 Conclusion:

Dr. Ediagbonya’s commitment to scientific innovation, public health, and sustainability makes him an exceptional candidate for the Excellence in Innovation Award. His work not only advances academic knowledge but also delivers practical solutions to pressing global environmental challenges 🌎🚀

 

 

Wei Pang | Photodegradation | Best Researcher Award

Ms. Wei Pang | Photodegradation | Best Researcher Award

Research Assistant in Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy at China.

Ms. Wei Pang is a dedicated Research Assistant at the Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, China. Her work focuses on photodegradation, a process critical for environmental safety and sustainability. Ms. Pang’s exceptional contributions to the field have earned her the prestigious Best Researcher Award, recognizing her outstanding research and commitment to advancing environmental science.

Publication Profile:
Education 🎓

Wei Pang holds a Master of Science in Nutrition and Food Hygiene from Tianjin University of Science and Technology, Tianjin, China, where they studied from September 2020 to June 2023. Their research focus during this time included the development of multifunctional materials for food and drug detection, as well as the design and synthesis of metal-organic frameworks (MOFs). Key courses completed during their studies include Food Chemistry, Analytical Chemistry, Nanomaterial Preparation, and Drug Analysis.

Professional Experience 💼

Wei Pang’s research experience includes significant work on two projects. From September 2020 to June 2023, they synthesized a novel magnetic graphoxide/biochar composite derived from tea to efficiently remove sulfonamides (SAs) and quinolones (QNs) antibiotics from water. This work led to a publication as the first author in Environmental Science and Pollution Research (Q1, IF: 5.8). Their second project focused on optimizing hierarchical MOFs composites through selective ligand removal, enhancing catalytic degradation efficiency for multiple antibiotics under visible light. This work was published as the first author in Separation and Purification Technology. Both projects demonstrate their expertise in material synthesis, adsorption performance testing, photocatalytic experiments, and characterization techniques.

Research Focus 🧪🔬

Wei Pang’s research primarily focuses on the development of multifunctional materials for food and drug detection. Their work in the field includes the design and synthesis of metal-organic frameworks (MOFs) for environmental applications, such as antibiotic degradation and removal from water. They have also worked on optimizing composites for enhanced catalytic efficiency and have made significant contributions to the field of nanomaterials.

 

Awards and Honors 🏆

Wei Pang possesses extensive technical skills in both instrumentation and software. They are proficient in operating advanced instrumentation such as HPLC, MS, Fluorescence Spectrophotometer, XRD, Raman Spectroscopy, Fluorescence Microscope, TEM, SEM, DSC, TGA, and Photoreactors. They also have experience using software like Office, Origin, Chem Draw, VASP, EndNote, and Photoshop. Additionally, they are proficient in English, having passed the CET-6 with a score of 460, and are skilled in reading and writing academic papers. These skills have been critical in their ability to conduct high-impact research and contribute to the scientific community.

Publications 📚
  • Organic ligands modulation of Ti-based hierarchical MOFs to improve visible-light-driven catalytic degradation properties for tetracycline antibiotics
    • Author(s): Wei Pang, Ruipeng Chen, Yonghui Wang, Xuexia Jia, Jian Hou, Li Wang, Zhixian Gao, Huanying Zhou
    • Journal: Separation and Purification Technology
    • Year: 2025
    • DOI: 10.1016/j.seppur.2025.131600
    • Citation: (Not yet available, as the article is in press)
  • High-performance ammonia sensor at room temperature based on 2D conductive MOF Cu3(HITP)2
    • Author(s): Sijin Cai, Xingpeng Huang, Manyu Luo, Deshou Xiong, Wei Pang, Meiling Wang, Li Wang, Shuang Li, Peng Luo, Zhixian Gao et al.
    • Journal: Talanta
    • Year: 2025
    • DOI: 10.1016/j.talanta.2024.127226
    • Citation: (Not yet available, as the article is in press)
  • A colorimetric/electrochemical microfluidic biosensor using target-triggered DNA hydrogels for organophosphorus detection
    • Author(s): Zesheng Liu, Ruipeng Chen, Haoran Wang, Chenxi Wang, Xue Zhang, Yingao Yang, Wei Pang, Shuyue Ren, Jingyi Yang, Chunxue Yang et al.
    • Journal: Biosensors and Bioelectronics
    • Year: 2024
    • DOI: 10.1016/j.bios.2024.116558
    • Citation: (Not yet available, as the article is in press)
  • Ultrathin metal-organic framework nanosheets (Cu-TCPP) assembled micro flower combined with endonuclease signal amplification for ultrasensitive detection
    • Author(s): Shiyu Li, Wei Pang, Yonghui Wang, Shuang Li, Shuo Wu, Shuyue Ren, Yu Wang, Kang Qin, Tie Han, Jun Liang et al.
    • Journal: Sensors and Actuators B: Chemical
    • Year: 2024
    • DOI: 10.1016/j.snb.2024.136093
    • Citation: (Not yet available, as the article is in press)
  • A surface-enhanced Raman scattering and colorimetric dual-mode aptasensor for ultrasensitive detection of kanamycin based on DNA hydrogel network fishing the MIL-101@AuNP nanohybrids
    • Author(s): Guanghua Li, Wei Pang, Yalan Bian, Sha Liu, Shuang Li, Zhixian Gao, Weijun Kang
    • Journal: Sensors and Actuators B: Chemical
    • Year: 2024
    • DOI: 10.1016/j.snb.2024.135937
    • Citation: (Not yet available, as the article is in press)
  • Novel magnetic graphoxide/biochar composite derived from tea for multiple SAs and QNs antibiotics removal in water
    • Author(s): Wei Pang, Yonghui Wang, Shuang Li, Yuanyuan Luo, Guanyu Wang, Jian Hou, Tie Han, Zhixian Gao, Qingbin Guo, Huanying Zhou et al.
    • Journal: Environmental Science and Pollution Research
    • Year: 2023
    • DOI: 10.1007/s11356-023-25298-w
    • Citation: (Not yet available, as the article is in press)

Conclusion ✨ 

Wei Pang is highly deserving of consideration for the Best Researcher Award. Their research contributes significantly to the fields of material science, environmental safety, and public health. With their proven academic track record, innovative approach, and leadership abilities, they are poised to make even more impactful contributions to scientific advancement. Their strengths, such as their strong publication record and active collaboration, make them a standout candidate. Moving forward, Wei Pang could enhance their impact by expanding their research network and increasing the citation impact of their work.