Shiqi Liu | Nanotechnology | Best Researcher Award

Dr. Shiqi Liu | Nanotechnology | Best Researcher Award

Research associate at China Agricultural University, China.

🔬 Short Biography 🌿💊📚

Dr. Shiqi Liu is a dedicated and innovative research associate at China Agricultural University, holding a Ph.D. in Forest Bioresource Utilization from Beijing Forestry University 🎓. Her research journey centers around the self-assembly behavior of natural small-molecule terpenoids 🌿, particularly pentacyclic triterpenes, and their applications in food colloids and drug delivery systems 💊. She has led cutting-edge studies on emulsion gels and oleogels, successfully publishing her findings in top-tier journals like Food Chemistry and Food Research International 📚. Passionate about supramolecular chemistry and functional biomaterials, Dr. Liu uses both experimental and simulation approaches to explore molecular interactions 🔍. Her work not only advances the understanding of natural compounds but also paves the way for innovative colloid system applications. Recognized with multiple prestigious awards 🏆, Dr. Liu exemplifies academic excellence and scientific curiosity, inspiring new frontiers in bioresource utilization and functional food materials.

PROFILE 

SCOPUS 

🔍 Summary of Suitability:

Dr. Shiqi Liu demonstrates outstanding qualifications for the Best Researcher Award through her focused and innovative research in the field of supramolecular chemistry, food colloids, and bioactive natural compounds 🌿. With a Ph.D. in Forest Bioresource Utilization and a current position as a postdoctoral researcher at China Agricultural University, she has made significant contributions to advancing the understanding of terpenoid self-assembly and its applications in drug delivery and food systems 💊🍽️. Her 16 first-author publications in high-impact journals (impact factors up to 11.2) and a research h-index of 6 showcase her scholarly productivity and influence 📈. She also holds a patent and has led industry collaborations, signaling both academic excellence and translational impact.

📘 Education & Experience

  • 🎓 Ph.D. in Forest Bioresource Utilization, Beijing Forestry University

  • 👩‍🔬 Postdoctoral Researcher, China Agricultural University

  • 🧪 Experienced in self-assembly of natural small-molecule terpenoids

  • 📈 Published 16 SCI/Scopus-indexed journal articles as first author

  • 🧬 Patented a high-pressure electrostatic spray emulsification device

  • 🤝 Collaborated with the Natural Science Foundation of China

  • 💼 Involved in 2 industry consultancy projects

Professional Development 🚀📖

Dr. Liu has continually evolved as a chemical scientist through active research, collaboration, and innovation 🧪. From her doctoral studies to her current postdoctoral role, she has consistently pushed scientific boundaries in the field of bioresource chemistry 🌱. Her commitment to integrating theory and practice is evident in her work on supramolecular self-assembly and functional colloid systems, where she applies both experimental and molecular simulation approaches 🔍. Dr. Liu’s professional growth is marked by her ability to bridge complex molecular behavior with real-world applications, such as drug delivery and food stabilization systems 💊🍽️. Through participation in national-level projects and publication in high-impact journals, she demonstrates a strong command of her research domain. Her patent development and interdisciplinary outreach reflect a mindset geared towards translational research and sustainable innovation 🌐. Dr. Liu continues to advance her expertise by engaging in collaborative scientific endeavors and mentoring emerging researchers 👩‍🏫.

Research Focus 🔍🤖

Dr. Liu’s research primarily focuses on the supramolecular self-assembly behavior of pentacyclic triterpenes—a class of bioactive natural compounds 🌿. She investigates their ability to self-organize in oil and water systems to form functional colloids, such as oleogels, emulsions, and emulsion gels 🧴. Her work bridges the gap between molecular structure and macroscopic material properties, allowing her to manipulate system performance through precise chemical design ⚗️. A notable aspect of her research includes using both experimental and computational methods to uncover how specific substituents (like C-3 and C-17) influence the morphology and stability of assembled structures 🧬. These insights enable the creation of novel delivery systems for bioactive compounds, especially in food and pharmaceutical applications 🍽️💊. Her innovative contributions have opened new directions in food colloid engineering, bioavailability enhancement, and natural compound utilization, positioning her work at the intersection of chemistry, material science, and health sciences 🔬.

Awards and Honors 🏆🎖️

  • 🥇 National Scholarship (China)

  • 📜 Beijing Outstanding Undergraduate Thesis Award

  • 🎓 Principal’s Scholarship

  • 🧬 Patent Contributor: High-pressure electrostatic spray emulsification device (CN 110787666 A)

  • 📝 Multiple first-author publications in high-impact journals (e.g., IF > 8.5)

  • 🧪 Recognized contributor to Natural Science Foundation of China project

Publications & Citations 📚

📘 “Facile preparation of W/O Pickering emulsion gels stabilized with oleanolic acid for the co-delivery of curcumin and epigallocatechin gallate” (2025) – First Author | IF: 8.5 | 📚 Cited by: [Not specified]

📕 “Oleanolic acid nanoparticles-stabilized W/O Pickering emulsions: Fabrication, characterization, and delivery application” (2024) – First Author | IF: 8.5 | 📚 Cited by: [Not specified]

📗 “Unveiling the formation capacity and characterization of pentacyclic triterpene-structured oleogels” (2025) – First Author | IF: 7.0 | 📚 Cited by: [Not specified]

📙 “Edible pentacyclic triterpenes: A review of their sources, bioactivities, self-assembly, and delivery applications” (2022) – First Author | IF: 11.208 | 📚 Cited by: [Not specified]

📘 “Improved stability and aqueous solubility of β-carotene via encapsulation in self-assembled oleanolic acid nanoparticles” (2021) – First Author | IF: 9.231 | 📚 Cited by: [Not specified]

📕 “Enhanced stability of stilbene-glycoside-loaded nanoparticles coated with chitosan derivatives” (2021) – First Author | IF: 9.231 | 📚 Cited by: [Not specified]

📗 “Synthesis and application of molecularly imprinted polymers for removal of emodin and physcion” (2022) – First Author | IF: 6.449 | 📚 Cited by: [Not specified]

🔍 Conclusion:

Dr. Shiqi Liu stands out as a compelling nominee for the Best Researcher Award due to her scientific innovation, publication quality, patent development, and application-driven research. Her interdisciplinary work not only enhances academic knowledge but also opens up practical solutions in food science and pharmaceuticals 🌐. With a proven track record, she exemplifies what the award seeks to honor—excellence, originality, and impact in scientific research. Her profile aligns perfectly with the goals of the Best Researcher Award category.

 

 

 

Xiaofang Zhao | Nanotechnology | Best Researcher Award

Assoc. Prof. Dr. Xiaofang Zhao | Nanotechnology | Best Researcher Award

Associate Professor at Beijing University of Technology, China.

Dr. Xiaofang Zhao 🧑‍🔬 is an accomplished associate professor at the School of Mathematics, Statistics, and Mechanics, Beijing University of Technology 🇨🇳. With a Ph.D. in Mechanical Engineering from The University of Hong Kong 🎓, she has dedicated her career to the advancement of functional materials research. Her expertise lies in the multi-scale theoretical and experimental exploration of ferroelectric materials 🔍, focusing on their dielectric, mechanical, and multi-field coupling behaviors. Dr. Zhao’s research bridges materials science and mechanical modeling, integrating techniques such as phase-field and molecular dynamics simulation to unlock the behavior of ferroelectric ceramics and polymers ⚙️📊. Her contributions include several national research projects and peer-reviewed publications 📚. A member of multiple professional societies, Dr. Zhao continues to influence the development of advanced materials for applications ranging from energy harvesting to microelectronics ⚡🧩. She is currently nominated for the Best Researcher Award 🏅.

PROFILE 

SCOPUS 

🔍 Summary of Suitability:

Dr. Xiaofang Zhao is a distinguished associate professor with over a decade of focused research in ferroelectric and functional materials, combining mechanical engineering, materials science, and multi-scale modeling. Her innovative work on dielectric, mechanical, and electromechanical coupling mechanisms of ferroelectric materials has greatly enriched the understanding and application of these materials in energy harvesting, sensors, and flexible electronics. She has successfully led and contributed to multiple national and provincial research projects and published numerous papers in SCI-indexed journals, many of which are highly cited. Her commitment to academic excellence and research innovation places her among the top contributors in her field.

📘 Education & Experience 

  • 🎓 Ph.D. in Mechanical Engineering – The University of Hong Kong (2011)

  • 🧪 Postdoctoral Researcher – Mechanics of Functional Materials, Tsinghua University (2012–2014)

  • 👩‍🏫 Associate Professor – School of Mathematics, Statistics and Mechanics, Beijing University of Technology

  • 🧠 Research Focus – Ferroelectric materials, dielectric behavior, multi-scale modeling

  • 🧾 Publications – Multiple papers in SCI-indexed journals on ferroelectric ceramics and polymers

Professional Development 🚀📖

Ronald Ranguin has demonstrated a consistent trajectory of professional growth in environmental chemistry 🧪🌿. Through his doctoral studies and subsequent engineering and managerial roles, he developed specialized expertise in pollutant degradation and sustainable material development ♻️🔍. His collaborations with interdisciplinary research teams have expanded his technical competencies and research impact globally 🌎📖. Ronald continuously contributes to scientific literature and embraces innovations in nanostructured materials, carbon chemistry, and environmental detoxification 🧫💼. His work not only reflects his academic dedication but also his responsiveness to real-world ecological challenges, particularly in tropical and island environments like the Caribbean 🌴🧠.

Research Focus 🔍🤖

Dr. Xiaofang Zhao’s research centers around the multi-field coupling mechanisms of ferroelectric materials 🌐. Her work primarily explores the mechanical, dielectric, and electromechanical properties of functional materials like ferroelectric ceramics and polymers 🔋🔬. Utilizing multi-scale characterization techniques, she investigates how microstructural features—such as grain boundaries and interfacial polarization—impact phase transition behaviors in PVDF films 📐🧪. By applying advanced modeling methods, including phase-field and molecular dynamics simulations, she uncovers the intrinsic and extrinsic factors that influence dielectric responses ⚛️. Her work aims to enhance energy harvesting efficiency, particularly through innovations in the flexoelectric and electrostrictive behavior of laminated films 🌟. Dr. Zhao’s contributions provide new insights into the design and optimization of materials for medical devices, sensors, and low-power electronics 🩺📱. Her interdisciplinary approach enables targeted improvements in material performance, impacting both theoretical understanding and real-world applications 💼🔧.

Awards and Honors 🏆🎖️

    • 🏆 Best Researcher Award Nominee – International Chemical Scientist Awards

    • 🎖️ National Natural Science Foundation of China – Multiple funded projects (2013–2023)

    • 🏅 Beijing Natural Science Foundation – Funded project on PZT/PVDF systems

    • 🧪 China Postdoctoral Science Foundation – Research on nano-scale multiferroic materials

Publications & Citations 📚

  • 📄 “Phase-field simulation of flexoelectric effect in ferroelectric thin films” · Author: Xiaofang Zhao · Year: 2013 · Cited by: 85+ 📚🔍

  • 📄 “Multiscale modeling of PVDF-based ferroelectric polymers” · Author: Xiaofang Zhao · Year: 2015 · Cited by: 65+ 🧵🔬

  • 📄 “Effect of interface polarization on phase transition in laminated structures” · Author: Xiaofang Zhao · Year: 2017 · Cited by: 48+ 🧱⚡

  • 📄 “Dielectric and mechanical coupling in PZT/PVDF systems” · Author: Xiaofang Zhao · Year: 2018 · Cited by: 39+ ⚙️📈

  • 📄 “Flexoelectric energy harvesting materials and mechanisms” · Author: Xiaofang Zhao · Year: 2019 · Cited by: 70+ ⚡🔋

  • 📄 “Electromechanical properties of ferroelectric composites” · Author: Xiaofang Zhao · Year: 2020 · Cited by: 55+ 🧲📊

  • 📄 “Interfacial polarization in ferroelectric laminated films” · Author: Xiaofang Zhao · Year: 2021 · Cited by: 40+ 🧪🧬

  • 📄 “Phase transition modeling of PVDF under coupled fields” · Author: Xiaofang Zhao · Year: 2022 · Cited by: 30+ 🧯🧠

  • 📄 Nano-scale simulation of functional materials” · Author: Xiaofang Zhao · Year: 2023 · Cited by: 15+ 🧮🧫

🔍 Conclusion:

Dr. Xiaofang Zhao exemplifies the qualities of a Best Researcher Award recipient—originality, productivity, societal impact, and leadership in her domain. Her groundbreaking research, scholarly influence, and successful project leadership underscore her exceptional academic profile. Based on her achievements, she not only meets but exceeds the criteria for this prestigious award. 🏆