Yasmina Khane | Nanotechnology | Best Researcher Award

Assoc. Prof. Dr. Yasmina Khane | Nanotechnology | Best Researcher Award

Associate Professor | University of Ghardaia | Algeria

Dr. Yasmina Khane, affiliated with the Université de Ghardaia in Algeria, is an accomplished researcher whose work bridges the disciplines of materials chemistry, environmental science, and nanotechnology. Her research primarily explores the synthesis, characterization, and functional applications of nanostructured materials particularly metal and metal oxide nanoparticles in catalysis, environmental remediation, and sustainable energy systems.Dr. Khane’s investigations have made notable contributions to green nanotechnology, especially through the development of phyto-synthesized nanoparticles using plant extracts as eco-friendly reducing agents. Her recent study on silver nanoparticles synthesized via Cotula cinerea extract highlights her commitment to sustainable materials science. This work demonstrated the potential of bio-fabricated nanomaterials in enhancing salt tolerance in wheat (Triticum durum), emphasizing agricultural resilience and plant-environment interactions under stress conditions.A central theme in her research is photocatalysis the design and optimization of semiconductor-based catalysts for pollutant degradation and energy-related reactions. Dr. Khane has synthesized and investigated photocatalytic systems such as ZnO-impregnated biomaterials and Cu₂NiSnS₄ thin films, which have shown remarkable efficiency in degrading organic contaminants like dyes and pharmaceutical residues. Her publications in journals such as Scientific Reports, Inorganic Chemistry Communications, and Reaction Kinetics, Mechanisms and Catalysis reflect her depth in reaction kinetics, surface chemistry, and materials modification.With over 657 citations, 34 publications, and an h-index of 12, Dr. Khane has established herself as an influential figure in applied chemical research. Her interdisciplinary collaborations with over 150 co-authors underscore a strong international research network. She continually integrates chemistry, physics, and biology to advance eco-conscious technologies for water purification, soil protection, and renewable energy conversion.Overall, Dr. Khane’s scientific portfolio demonstrates a commitment to environmental sustainability through the innovative use of nanostructured catalysts and green synthesis methods. Her work contributes meaningfully to the global pursuit of cleaner technologies, reflecting the synergy between nanoscience, catalysis, and environmental protection.

Profiles : Google Scholar | Scopus | ORCID | ResearchGate | LinkedIn

Featured Publications

  1. Fenniche, F., Khane, Y., Hafsi, Z., Farhat, M., Aouf, D., & Alarbi, F. (2025). Photo catalytic degradation of Coomassie Brilliant Blue using a ternary Polyaniline/Fe₂O₃/Graphene nanocomposite under visible light. Sebha University Conference Proceedings, 103–109.

  2. Daoud, M., Khane, Y., Aouf, D., Benturki, O., Girods, P., Rogaume, Y., & Fontana, S. (2025). Efficient removal of malachite green using modified Algerian date palm spikelet: Characterization, design of experiment (Box–Behnken), density functional theory analysis. Reaction Kinetics, Mechanisms and Catalysis, 1–27.

  3. Kesbi, B., Salhi, N., Khane, Y., Albukhaty, S., Addad, A., Abideen, Z., Alsufyani, H., … (2025). Potential effect of phyto-synthesized silver nanoparticles using Cotula cinerea Del raw extract on salt tolerance of wheat seeds (Triticum durum desf., Boussellam variety). Scientific Reports, 15(1), 28061. Citations: 1

  4. Farhat, M., Al Madani, M. A., Abdullah, T., Embaya, M., Saeed, A., Saleh, A., … (2025). Evaluation of the physical properties of local wheat husk ash and its effects on the compressive strength of hardened cement paste. Discover Chemistry, 2(1), 89.

  5. Nezzari, A., Medina, S., Khane, Y., Boublenza, H., Guezzoul, M., Zoukel, A., … (2025). Synthesis, properties, and photocatalytic degradation of Brilliant Green dye using Cu₂NiSnS₄ thin films under ultraviolet irradiation. Inorganic Chemistry Communications, 174, 114021. Citations: 3

Dr. Yasmina Khane’s research advances sustainable nanotechnology through eco-friendly materials and photocatalysis, offering innovative solutions for environmental purification, agricultural resilience, and renewable energy. Her work bridges science and society, driving global progress toward a cleaner and greener future.

Yoon Dae Hyeob | Nanotechnology | Chemical Research Excellence Award

Mr. Yoon Dae Hyeob | Nanotechnology | Chemical Research Excellence Award

Undergraduate Researcher, Chungbuk National University (CBNU) in  South Korea.

🔬 Short Biography 🌿💊📚

Dae Hyeob Yoon 🎓 is an enthusiastic undergraduate researcher in Mechanical Engineering at Chungbuk National University (CBNU) 🏛️. With a passion for micro/nanotechnology 🔬, sensors 📡, and MEMS, he has already co-authored a scientific publication in Applied Sciences titled “Development of a Flexible and Conductive Heating Membrane…” 📄. His early engagement in research has led to meaningful contributions to wearable electronics, showcasing innovative applications in smart textiles 👕. He received recognition at the UROP Achievement Presentation 🏅 and has actively shared his work through poster presentations at KSME 🇰🇷 and the upcoming EKC in Austria 🇦🇹. Dae Hyeob’s commitment to cutting-edge research and hands-on experience highlights his growing potential in engineering and nanotech-based innovation 🚀.

PROFILE 

Orcid 

🔍 Summary of Suitability:

Dae Hyeob Yoon has demonstrated exceptional promise in chemical and materials research at an early academic stage. As an undergraduate researcher, he has already contributed to high-impact work involving electroless plating and nanofiber membrane engineering—fields critical to chemical and materials innovation. His ability to co-author a peer-reviewed journal article in Applied Sciences and present at national and international forums underscores his commitment and capability in advancing chemical research.

🔹 Education & Experience 

Dae Hyeob Yoon 🎓 is currently pursuing his Bachelor of Science degree in Mechanical Engineering at Chungbuk National University (CBNU) 🏫. As an undergraduate researcher, he actively explores fields like micro/nanotechnology ⚛️, sensors 🔍, and MEMS (Microelectromechanical Systems) ⚙️. His most notable experience includes co-authoring a research article published in the journal Applied Sciences 🧪. Dae Hyeob has also participated in industry-relevant research projects, including one consultancy project, demonstrating early exposure to applied engineering solutions 🏗️. He presented his findings at major academic platforms like the KSME conference 🗣️ and is scheduled to present internationally at EKC 2025 🇦🇹. His award at the UROP presentation reflects his strong engagement in academic research and innovation at the undergraduate level 🥇.

🔹Professional Development

Dae Hyeob Yoon 💡 has shown commendable growth through professional development in research, academic collaboration, and applied innovation. His publication in Applied Sciences marks a significant milestone early in his academic career 📘. Engaging in one consultancy/industry-based project 📊 has helped him bridge theoretical knowledge with real-world applications. He has actively presented posters at both national and international conferences such as KSME 🏛️ and the upcoming EKC in Austria 🌍. These platforms not only validate his technical contributions but also enhance his communication and scientific outreach skills 🗣️. Through these experiences, Dae Hyeob has gained confidence in publishing, presenting, and networking with peers and professionals. Though still at the undergraduate level, he displays a trajectory that aligns with global standards of academic excellence and practical impact 🚀.

🛠️ Skills & Expertise

Dae Hyeob Yoon 🧠 possesses a strong set of technical and research-based skills that align with his focus on mechanical engineering and nanotechnology. He is proficient in experimental design 🔬, data analysis 📊, and material characterization techniques essential for micro/nano research. His hands-on experience with electroless plating, nanofiber fabrication, and flexible electronics 💡 showcases his laboratory competency. Dae Hyeob demonstrates excellent scientific writing ✍️, having contributed to a peer-reviewed publication. He is skilled in poster preparation and oral presentations 🗣️, evident from his active participation in conferences such as KSME and EKC. His collaboration in interdisciplinary projects reflects strong teamwork and problem-solving abilities 🤝. Additionally, he shows initiative in learning new tools and adapting to research environments quickly ⚙️. His growing experience with sensors, MEMS, and smart materials further strengthens his technical portfolio, making him a promising researcher for future innovations in wearable and adaptive technologies 🚀.

🔬 Research Focus

Dae Hyeob Yoon’s 🔬 research focus lies at the intersection of micro/nanotechnology, sensors, and MEMS (Microelectromechanical Systems) 🔍. His key interest revolves around the development of scalable, low-voltage, and flexible heating membranes for use in wearable electronics and smart textiles 👕. His co-authored work in Applied Sciences demonstrates innovation using BSA-assisted electroless plating techniques on nanofiber membranes, contributing to advances in flexible and conductive materials ⚗️. The research tackles challenges in mechanical stability, voltage efficiency, and applicability for next-generation electronic textiles ⚡. These studies aim to revolutionize how wearable devices function in health, fitness, and smart environments 🌐. By engaging with real-world engineering applications at the micro/nano scale, Dae Hyeob is addressing limitations in existing sensor technologies while opening up new possibilities for adaptive, lightweight, and cost-effective devices 🧠.

🏆 Awards & Recognitions

  • 🏅 Received award at the Undergraduate Research Opportunities Program (UROP) Achievement Presentation, CBNU

  • 📜 Co-author of a published research paper in Applied Sciences (SCI-indexed journal)

  • 🧪 Selected to present a research poster at the Korean Society of Mechanical Engineers (KSME) Conference

  • 🌍 Scheduled to present at the European Korean Conference (EKC) in Austria, August 2025

Publications & Citations 📚

📄 “Development of a Flexible and Conductive Heating Membrane via BSA-Assisted Electroless Plating on Electrospun PVDF-HFP Nanofibers” — Published in Applied Sciences (MDPI) in 2024, cited by [check current citations on MDPI/Google Scholar] 🔍 https://www.mdpi.com/2076-3417/15/14/8023 📚

🔍 Conclusion:

Dae Hyeob Yoon’s early-stage yet impactful work in chemical-based materials engineering, particularly in nanoscale electroless plating and polymer membrane development, makes him a highly suitable candidate for the Chemical Research Excellence Award. His research not only contributes to fundamental chemical processing but also has real-world applications in next-gen wearable technologies. His trajectory signals future breakthroughs in chemical innovation.

Shiqi Liu | Nanotechnology | Best Researcher Award

Dr. Shiqi Liu | Nanotechnology | Best Researcher Award

Research associate at China Agricultural University, China.

🔬 Short Biography 🌿💊📚

Dr. Shiqi Liu is a dedicated and innovative research associate at China Agricultural University, holding a Ph.D. in Forest Bioresource Utilization from Beijing Forestry University 🎓. Her research journey centers around the self-assembly behavior of natural small-molecule terpenoids 🌿, particularly pentacyclic triterpenes, and their applications in food colloids and drug delivery systems 💊. She has led cutting-edge studies on emulsion gels and oleogels, successfully publishing her findings in top-tier journals like Food Chemistry and Food Research International 📚. Passionate about supramolecular chemistry and functional biomaterials, Dr. Liu uses both experimental and simulation approaches to explore molecular interactions 🔍. Her work not only advances the understanding of natural compounds but also paves the way for innovative colloid system applications. Recognized with multiple prestigious awards 🏆, Dr. Liu exemplifies academic excellence and scientific curiosity, inspiring new frontiers in bioresource utilization and functional food materials.

PROFILE 

SCOPUS 

🔍 Summary of Suitability:

Dr. Shiqi Liu demonstrates outstanding qualifications for the Best Researcher Award through her focused and innovative research in the field of supramolecular chemistry, food colloids, and bioactive natural compounds 🌿. With a Ph.D. in Forest Bioresource Utilization and a current position as a postdoctoral researcher at China Agricultural University, she has made significant contributions to advancing the understanding of terpenoid self-assembly and its applications in drug delivery and food systems 💊🍽️. Her 16 first-author publications in high-impact journals (impact factors up to 11.2) and a research h-index of 6 showcase her scholarly productivity and influence 📈. She also holds a patent and has led industry collaborations, signaling both academic excellence and translational impact.

📘 Education & Experience

  • 🎓 Ph.D. in Forest Bioresource Utilization, Beijing Forestry University

  • 👩‍🔬 Postdoctoral Researcher, China Agricultural University

  • 🧪 Experienced in self-assembly of natural small-molecule terpenoids

  • 📈 Published 16 SCI/Scopus-indexed journal articles as first author

  • 🧬 Patented a high-pressure electrostatic spray emulsification device

  • 🤝 Collaborated with the Natural Science Foundation of China

  • 💼 Involved in 2 industry consultancy projects

Professional Development 🚀📖

Dr. Liu has continually evolved as a chemical scientist through active research, collaboration, and innovation 🧪. From her doctoral studies to her current postdoctoral role, she has consistently pushed scientific boundaries in the field of bioresource chemistry 🌱. Her commitment to integrating theory and practice is evident in her work on supramolecular self-assembly and functional colloid systems, where she applies both experimental and molecular simulation approaches 🔍. Dr. Liu’s professional growth is marked by her ability to bridge complex molecular behavior with real-world applications, such as drug delivery and food stabilization systems 💊🍽️. Through participation in national-level projects and publication in high-impact journals, she demonstrates a strong command of her research domain. Her patent development and interdisciplinary outreach reflect a mindset geared towards translational research and sustainable innovation 🌐. Dr. Liu continues to advance her expertise by engaging in collaborative scientific endeavors and mentoring emerging researchers 👩‍🏫.

Research Focus 🔍🤖

Dr. Liu’s research primarily focuses on the supramolecular self-assembly behavior of pentacyclic triterpenes—a class of bioactive natural compounds 🌿. She investigates their ability to self-organize in oil and water systems to form functional colloids, such as oleogels, emulsions, and emulsion gels 🧴. Her work bridges the gap between molecular structure and macroscopic material properties, allowing her to manipulate system performance through precise chemical design ⚗️. A notable aspect of her research includes using both experimental and computational methods to uncover how specific substituents (like C-3 and C-17) influence the morphology and stability of assembled structures 🧬. These insights enable the creation of novel delivery systems for bioactive compounds, especially in food and pharmaceutical applications 🍽️💊. Her innovative contributions have opened new directions in food colloid engineering, bioavailability enhancement, and natural compound utilization, positioning her work at the intersection of chemistry, material science, and health sciences 🔬.

Awards and Honors 🏆🎖️

  • 🥇 National Scholarship (China)

  • 📜 Beijing Outstanding Undergraduate Thesis Award

  • 🎓 Principal’s Scholarship

  • 🧬 Patent Contributor: High-pressure electrostatic spray emulsification device (CN 110787666 A)

  • 📝 Multiple first-author publications in high-impact journals (e.g., IF > 8.5)

  • 🧪 Recognized contributor to Natural Science Foundation of China project

Publications & Citations 📚

📘 “Facile preparation of W/O Pickering emulsion gels stabilized with oleanolic acid for the co-delivery of curcumin and epigallocatechin gallate” (2025) – First Author | IF: 8.5 | 📚 Cited by: [Not specified]

📕 “Oleanolic acid nanoparticles-stabilized W/O Pickering emulsions: Fabrication, characterization, and delivery application” (2024) – First Author | IF: 8.5 | 📚 Cited by: [Not specified]

📗 “Unveiling the formation capacity and characterization of pentacyclic triterpene-structured oleogels” (2025) – First Author | IF: 7.0 | 📚 Cited by: [Not specified]

📙 “Edible pentacyclic triterpenes: A review of their sources, bioactivities, self-assembly, and delivery applications” (2022) – First Author | IF: 11.208 | 📚 Cited by: [Not specified]

📘 “Improved stability and aqueous solubility of β-carotene via encapsulation in self-assembled oleanolic acid nanoparticles” (2021) – First Author | IF: 9.231 | 📚 Cited by: [Not specified]

📕 “Enhanced stability of stilbene-glycoside-loaded nanoparticles coated with chitosan derivatives” (2021) – First Author | IF: 9.231 | 📚 Cited by: [Not specified]

📗 “Synthesis and application of molecularly imprinted polymers for removal of emodin and physcion” (2022) – First Author | IF: 6.449 | 📚 Cited by: [Not specified]

🔍 Conclusion:

Dr. Shiqi Liu stands out as a compelling nominee for the Best Researcher Award due to her scientific innovation, publication quality, patent development, and application-driven research. Her interdisciplinary work not only enhances academic knowledge but also opens up practical solutions in food science and pharmaceuticals 🌐. With a proven track record, she exemplifies what the award seeks to honor—excellence, originality, and impact in scientific research. Her profile aligns perfectly with the goals of the Best Researcher Award category.

 

 

 

P. ABISHAKE DAVID | Nanomaterials | Best Researcher Award

 

Mr. P. ABISHAKE DAVID | Nanomaterials | Best Researcher Award

Ph.D. Research Scholar at T.B.M.L. College, Porayar in India.

P. Abishake David 🎓 is a dedicated Ph.D. Research Scholar at T.B.M.L. College, Porayar (affiliated with Annamalai University), specializing in the development of metal-organic frameworks (MOFs) for electrochemical energy storage ⚡. With a first-class distinction in his postgraduate studies 🏅, he has successfully synthesized Cu-MOF and Co-MOF for supercapacitor applications, utilizing advanced techniques such as cyclic voltammetry, UV-Vis, FT-IR, and XPS 🧪. As a reviewer for the Journal of Inorganic and Organometallic Polymers and Materials and an active conference organizer 🌐, he is committed to advancing sustainable energy solutions 🔋 through innovative materials research.

Professional Profile
Suitability for the Researcher Award

P. Abishake David 🎓 is highly suitable for the Best Researcher Award due to his focused and innovative contributions to the field of Electrochemical Energy Storage 🔋. His research specializes in the synthesis and electrochemical characterization of Metal-Organic Frameworks (MOFs) 🧪, particularly Cu-MOF and Co-MOF, aimed at enhancing supercapacitor performance ⚡. He has applied advanced techniques like Cyclic Voltammetry, Galvanostatic Charge-Discharge, and Impedance Spectroscopy 🔬 to optimize material properties for sustainable energy solutions 🌱.

🎓 Education

  • ✅ Completed Postgraduate (PG) in Physical Sciences with First Class and Distinction 🏅
  • ✅ Qualified Ph.D. entrance exams at Bharathidasan University and Annamalai University 📜
  • 🎯 Currently pursuing Ph.D. Research at T.B.M.L. College, Porayar (Affiliated to Annamalai University) 🏛️
  • 📖 Preparing for CSIR NET Exam in Physical Science 🧠

💼 Experience

  • 🧪 Research focused on Metal-Organic Frameworks (MOFs) for Electrochemical Energy Storage 🔋
  • 🧰 Hands-on experience with techniques like UV-Vis, FT-IR, FT-Raman, XPS, Cyclic Voltammetry, Galvanostatic Charge-Discharge, and Impedance Spectroscopy 🔬
  • ⚡ Successfully synthesized and optimized Cu-MOF and Co-MOF for supercapacitor applications 🔄
  • 🌍 Served as a Technical Member in organizing an International Conference 📅
  • 📝 Reviewer for the Journal of Inorganic and Organometallic Polymers and Materials 📚
  • 🤝 Collaborated with Dr. Manikandan Ayyar from KAHE, Coimbatore 🔗

 

Professional Development 🚀📖

P. Abishake David 🎓 continuously advances his professional journey through dedicated research in Metal-Organic Frameworks (MOFs) for energy storage 🔋. He has gained hands-on expertise in advanced analytical techniques 🧪 such as UV-Vis, FT-IR, XPS, and Cyclic Voltammetry to enhance supercapacitor performance ⚡. Actively preparing for the CSIR NET exam 📖, he aims to strengthen his academic credentials while contributing innovative solutions to sustainable energy 🌍. Serving as a reviewer 📝 and participating in international conferences 🌐, Abishake builds collaborations 🤝 and sharpens his skills, remaining committed to pushing the boundaries of electrochemical materials research 🔬.

 

Research Focus 🔍🤖

P. Abishake David 🎓 focuses his research on the Electrochemical Energy Storage category 🔋, specializing in the synthesis and optimization of Metal-Organic Frameworks (MOFs) 🧪. His work targets developing high-performance materials like Cu-MOF and Co-MOF to improve supercapacitor efficiency ⚡. Using advanced techniques such as Cyclic Voltammetry, Galvanostatic Charge-Discharge, and Impedance Spectroscopy 🔬, he studies material behavior for sustainable energy applications 🌱. His research area extends to Nanomaterials, Graphene, and 2D Materials 🌐, with the goal of creating innovative solutions for next-generation power storage technologies 🚀, supporting the global demand for renewable energy 🌍.

🏆 Awards & Honors

  • 🥇 Award Nominee for Best Researcher Award by Chemicalscientists.com 🧪
  • 🥈 Award Nominee for Best Research Scholar Award 🎓
  • 🌐 Served as a Technical Member in organizing an International Conference on advanced research topics 📅
  • ✍️ Appointed as a Reviewer for the Journal of Inorganic and Organometallic Polymers and Materials 📚

 

Publication Top Notes:

📄 “A study on the facile synthesis of Cu-influenced organic framework and their characteristic properties”M Jothibas, PA David, S Srinivasan, P Emerson, A Mathivanan | 🗞️ Journal of Molecular Structure 1320, 139429 | 📅 2025 | 🔍 Cited by: 1

📄 Publication: “Electrochemical Performance of Metal-Organic Frameworks for Supercapacitor Applications” 🧪 | Published in: 2023 📅 | Cited by: 1 🔍

📌 Conclusion:

Considering his specialized research in advanced energy materials, early but impactful publication record, peer-review contributions, and active participation in international academic activities 🌍, P. Abishake David is a deserving candidate for the Best Researcher Award 🏅. His work directly supports global efforts toward sustainable and efficient energy technologies, reflecting both innovation and societal relevance 🌱⚡.