Jeffrey Amelse | Environmental Chemistry | Best Researcher Award

Dr. Jeffrey Amelse | Environmental Chemistry | Best Researcher Award

Invited Contributor at University of Aveiro, Portugal

Dr. Jeffrey A. Amelse is an accomplished chemical engineer, researcher, and educator with a distinguished career spanning academia and industry. He earned his Ph.D. in Chemical Engineering from Northwestern University and went on to make significant contributions to catalysis, molecular sieves, petrochemical process design, and carbon sequestration technologies. With over three decades at BP Amoco Chemical Company, he played a pivotal role in developing and commercializing advanced paraxylene technologies, molecular sieve catalysts, and innovative process designs that remain influential in the petrochemical sector. Following his industrial career, he transitioned to academia as an Invited Teaching Professor at the University of Aveiro in Portugal, where he continues to shape the future of energy, catalysis, and sustainability through teaching and research. Currently, as Lead Scientist at Carbon Sequestration, Inc., he pioneers low-cost, natural methods for carbon dioxide removal. His legacy reflects a rare blend of industrial leadership, academic excellence, and innovation.

Professional ProfileΒ 

Dr. Amelse’s academic foundation in chemical engineering is marked by rigorous training and a passion for applied research. He earned his Bachelor of Science in Chemical Engineering from the University of Illinois at Urbana-Champaign. He then pursued graduate studies at Northwestern University, obtaining his Master of Science in Chemical Engineering followed by a Ph.D. His doctoral research, under Professors John Butt and Lyle Schwartz, focused on β€œSilica Supported Iron Bimetallic Catalysts for the Fischer-Tropsch Synthesis,” combining catalyst characterization with performance evaluationβ€”a project that reflected his early interest in bridging fundamental chemistry with industrial applications. Beyond formal degrees, he pursued numerous continuing education courses throughout his career, covering refining, petrochemicals, and biofuels. This extensive educational background not only equipped him with technical expertise but also laid the groundwork for his later innovations in catalysis, petrochemical processes, and sustainable energy technologies, enabling him to contribute across academia and industry.

ExperienceΒ 

Dr. Amelse’s professional journey integrates high-level industrial leadership, academic teaching, and cutting-edge research. At BP Amoco Chemical Company, he was a core team member in designing world-scale paraxylene crystallization units, developing next-generation catalysts, and leading U.S. Department of Energy–sponsored projects on ammonia absorption refrigeration. He also guided international collaborations, including projects in Belgium, India, Portugal, and the UK, making significant contributions to global petrochemical technology. After retiring from BP Amoco, he joined the University of Aveiro as an Invited Teaching Professor, lecturing on biofuels, refining, and petrochemicals while contributing to molecular sieve research using solid-state NMR. Currently, he serves as Lead Scientist at Carbon Sequestration, Inc., leading commercialization of woody biomass burial for carbon dioxide removal. His experience highlights a career that bridges innovation, teaching, and sustainability, demonstrating his ability to drive transformative advances across both industrial and academic landscapes.

Professional Development

Throughout his career, Dr. Amelse actively pursued professional development to remain at the forefront of chemical engineering and energy research. At BP Amoco, he became a trained leader in HAZOP and LOPA safety analysis techniques, guiding critical plant safety design studies. He also served as an instructor for internal technical courses on paraxylene catalysis and process technologies, reflecting his commitment to knowledge transfer within industry. His collaborations with leading universities, including Cambridge University and the University of Aveiro, provided opportunities to mentor graduate students and postdoctoral researchers, strengthening academia-industry ties. More recently, he expanded his expertise into renewable energy and climate solutions, developing a micro-module on Global Warming, Renewable Energy, and Decarbonization for the European Consortium of Innovative Universities. His continual engagement with new technologies, from biofuels to biomass carbon sequestration, exemplifies lifelong learning and adaptation. This pursuit of professional growth underscores his leadership in advancing energy innovation and sustainability.

Skills & Expertise

Dr. Amelse possesses a rare combination of technical, analytical, and leadership skills in catalysis, process design, and sustainable energy solutions. He is recognized as an expert in molecular sieve synthesis and characterization, having applied advanced techniques such as solid-state NMR to study catalytic materials. His proficiency in ASPEN process simulation and HTRI heat exchanger design software enabled him to lead complex petrochemical process designs with strong economic and technical insight. He also has deep expertise in the aromatics marketplace, including paraxylene process technologies, competitive benchmarking, and licensing strategies. In addition to technical mastery, he is skilled in safety leadership through HAZOP and LOPA methodologies, ensuring safe and efficient operations. His teaching and mentoring roles highlight his ability to translate complex scientific concepts into practical applications. Today, his expertise extends into biomass burial technologies for carbon sequestration, making him a versatile innovator in both conventional petrochemicals and emerging sustainable energy fields.

Resarch Focus

Dr. Amelse’s research has consistently advanced the frontiers of catalysis, petrochemicals, and sustainable energy. His early work focused on catalyst development and reactor modeling for xylene isomerization and paraxylene production, where he pioneered molecular sieve catalyst characterization and design methodologies still in use today. He contributed to the development of novel catalysts for dehydrogenation, transalkylation, and isomerization processes, resulting in patents that improved energy efficiency and selectivity in petrochemical operations. In academia, his research shifted toward renewable energy, exploring biofuels from cellulosic biomass and molecular sieve applications in green chemistry. Currently, his focus lies in carbon sequestration, specifically the commercialization of woody biomass burial as a low-cost and natural method for carbon dioxide removal. His work also explores catalytic oxidation of biomethane and novel bio-aromatic conversion processes. By integrating catalysis, process design, and climate solutions, his research exemplifies innovation at the intersection of chemical engineering and sustainability.

Awards & Recognitions

Dr. Amelse’s career achievements have been recognized through numerous grants, patents, and scholarly contributions. While at BP Amoco, he received special grants from the Head of Technology and the Distributed Research Laboratory to sponsor advanced academic collaborations at the University of Aveiro and Cambridge University. His patentsβ€”spanning paraxylene recovery, catalyst design, refrigeration systems, and biomass conversionβ€”demonstrate his innovation and impact, with technologies implemented at industrial scale. His process for recovering germanium from optical fiber effluents, developed at Bell Labs, was notable enough to be featured in The New York Times. In academia, his contributions to climate education were recognized through his development of a European Consortium module on global warming and sustainability. His publications in leading journals, chapters in Industrial Arene Chemistry, and invited lectures further highlight his influence. Collectively, these recognitions underscore his reputation as a pioneering researcher, mentor, and innovator in chemical engineering and sustainability.

Publication Top NotesΒ 

Title: A European Consortium of Innovative Universities Micromodule on Global Warming, Renewable Energy, and Decarbonization
Authors: J.A. Amelse
Year: 2025

Title: Terrestrial Storage of Biomass (Biomass Burial): A Natural, Carbon-Efficient, and Low-Cost Method for Removing COβ‚‚ from Air
Authors: J.A. Amelse
Year: 2025

Title: BP/Amoco Paraxylene Crystallization Technology
Authors: J.A. Amelse
Year: 2023

Title: Reactions and Mechanisms of Xylene Isomerization and Related Processes
Authors: J.A. Amelse
Year: 2023

Title: Sequestering Biomass for Natural, Carbon Efficient, and Low-Cost Direct Air Capture of Carbon Dioxide
Authors: J.A. Amelse, P.K. Behrens
Year: 2022

Dr. Amelse is a highly deserving candidate for the Best Researcher Award. His lifelong contributions to catalysis, petrochemicals, renewable energy, and carbon sequestration reflect both depth and breadth of expertise. His patents and publications demonstrate originality and industrial impact, while his teaching and mentoring underscore his role in shaping future scientists. Although further visibility of his research impact metrics (citations, h-index) and a stronger articulation of future directions could enhance his case, his record already places him among the leading researchers globally.

Ling Xie | Green Chemistry | Young Scientist Award

Dr. Ling Xie | Green Chemistry | Young Scientist Award

master at guangdong university of technology in China.

πŸ”¬ Xie Ling, a distinguished researcher at Guangzhou University, specializes in renewable energy utilization, hydrogen production via aqueous-phase reforming, and biomass conversion. She holds an M.S. in Power Engineering from Guangdong University of Technology and a B.S. in Building Environment and Energy Applications from Hunan Institute of Engineering. πŸ† Her accolades include the National Scholarship (2021) and the Provincial Outstanding Graduate Award (2022). With 12 granted patents, multiple peer-reviewed publications, and leadership in national research projects, her work bridges fundamental research and industrial applications, particularly in catalysis, COβ‚‚ capture, and sustainable energy solutions. ⚑🌱

Professional Profile

Suitability for the Young Scientist Award

Xie Ling is an exceptional candidate for the Young Scientist Award (MC3 Awards) due to her remarkable contributions in the field of hydrogen energy, biomass conversion, and COβ‚‚ capture. Her impressive research portfolio includes high-impact publications, 12 patents, and leadership in multiple national/provincial projects. She has successfully bridged academic research with industrial applications, demonstrating innovation and practical impact in sustainable energy solutions.

Education πŸŽ“

βœ… M.S. in Power Engineering, Guangdong University of Technology (GPA: 3.8/4.0)
βœ… B.S. in Building Environment and Energy Applications, Hunan Institute of Engineering (GPA: 4.2/4.5)

Experience πŸ†

πŸ”Ή Researcher, Guangzhou University – Specializing in hydrogen production, biomass conversion, and renewable energy systems
πŸ”Ή Lead/Participant in 4 National/Provincial Research Projects – Focused on COβ‚‚ capture, hydrogen production, and sustainable energy solutions
πŸ”Ή Inventor with 12 Granted Patents – Covering energy-efficient cement production, heat recovery systems, and advanced catalysis
πŸ”Ή Published 3 Peer-Reviewed Papers – Including a Q1 journal article on hydrogen production
πŸ”Ή Industry Collaboration – Worked with Guangdong Dangliang Industrial Control Technology Co. on R&D projects
πŸ”Ή Awarded National Scholarship (2021) & Provincial Outstanding Graduate (2022)

Professional Development πŸš€πŸ“–

πŸš€ Xie Ling’s professional journey is marked by groundbreaking research in hydrogen energy ⚑, biomass conversion 🌿, and COβ‚‚ capture πŸ’¨. She has led four national/provincial projects πŸ”¬, secured 12 patents πŸ“œ, and published three peer-reviewed papers πŸ“–, including a Q1 journal article. Her collaboration with industry leaders 🀝 has advanced sustainable energy solutions. Recognized with prestigious scholarships πŸ†, she integrates catalysis, material characterization, and system design into real-world applications. Committed to renewable energy innovation 🌍, Xie Ling continues to bridge academia and industry, driving technological advancements for a greener future. 🌱

Research Focus πŸ”πŸ€–

πŸ”¬ Xie Ling’s research focuses on hydrogen energy ⚑, biomass conversion 🌿, and COβ‚‚ capture πŸ’¨, aiming for sustainable energy solutions 🌍. She specializes in aqueous-phase reforming for hydrogen production πŸ›’οΈ, catalyst development for efficient fuel conversion πŸ”₯, and waste-to-energy technologies ♻️. Her work integrates advanced catalysis, material characterization, and renewable energy system design πŸ—οΈ. With 12 patents πŸ“œ and high-impact publications πŸ“–, she contributes to green fuel innovations πŸš€. Through industry collaborations 🀝, she advances clean energy applications, bridging academic research and industrial solutions for a low-carbon future. 🌱

πŸ† Awards & Honors

πŸŽ–οΈ National Scholarship (2021) – Recognized for outstanding academic performance and research contributions.
πŸ₯‡ Provincial Outstanding Graduate (2022) – Awarded for excellence in research and innovation.
πŸ“œ 12 Granted Patents – Covering energy-efficient cement production, heat recovery systems, and hydrogen production technologies.
πŸ“– Published in Q1 & Q2 Journals – Featured in high-impact journals like the International Journal of Hydrogen Energy.
πŸ”¬ Leader/Participant in 4 National/Provincial Research Projects – Focused on hydrogen energy, COβ‚‚ capture, and renewable energy systems.
πŸ… Recognized in National Competitions – Contributed to energy conservation and emission reduction projects.

Publication Top Notes:

πŸ“– Hydrogen Production by Aqueous Phase Reforming over Stable La-Promoted Ni-Based Hydrotalcite Catalysts (2023) – International Journal of Hydrogen Energy πŸ”¬ *Cited by: [N/A]

πŸ“– Boiling Enhancement on Thermally Induced Deformation Surfaces (2024) – International Journal of Heat and Mass Transfer 🌑️ *Cited by: [N/A]

πŸ“– Advances in Biomass-Derived Organic Wastewater Reforming for Hydrogen Production (2024) – Chinese Core Journal ♻️ *Cited by: [N/A]

πŸ“Œ Conclusion:

Xie Ling’s scientific achievements, technical expertise, and contributions to sustainable energy research make her highly deserving of the Young Scientist Award (MC3 Awards). Her innovative approach and commitment to solving real-world energy challenges position her as a future leader in the field. Awarding her this recognition will not only honor her exceptional work but also encourage further advancements in green energy technologies. 🌍