Nadeem Abbas | Nanotechnology | Editorial Board Member

Dr. Nadeem Abbas | Nanotechnology | Editorial Board Member

Researcher | Prince Sultan University | Saudi Arabia

Dr. N. Abbas is a distinguished researcher recognized for his pioneering contributions to fluid mechanics, heat transfer, and nanofluid dynamics, with a strong focus on hybrid nanofluids, magnetohydrodynamics (MHD), nonlinear stretching surfaces, and microscale thermal phenomena. His research emphasizes the development of advanced mathematical and computational models to analyze complex flow behaviors relevant to modern engineering and biomedical systems. With an extensive publication record in leading international journals such as Chinese Journal of Physics, Computer Methods and Programs in Biomedicine, Results in Physics, and International Communications in Heat and Mass Transfer, Dr. Abbas has established himself as an influential figure in applied mathematics and thermofluid sciences. His most cited works on MHD hybrid nanofluid flow over nonlinear stretching cylinders, hybrid-based nanofluid flow over curved surfaces, and three-dimensional stagnation point flows have collectively garnered over 800 citations, reflecting his significant academic impact. Integrating analytical, numerical, and simulation-based approaches, Dr. Abbas’s research addresses key challenges in energy systems, materials processing, and biomedical fluid modeling, fostering international collaborations across the Middle East and Asia that advance the understanding of hybrid nanofluid applications for enhanced heat transfer and optimized fluid performance. His recent studies on nonlinear modeling of hybrid nanofluid flows over permeable and thermally slipping surfaces provide valuable insights into sustainable energy systems and industrial cooling processes. Through his innovative research and globally recognized publications, Dr. Abbas continues to contribute substantially to computational physics, applied mathematics, and mechanical engineering, driving progress in smart materials and nanofluid technologies with profound scientific and societal relevance.

Profiles : Google Schalor

Featured Publications

  1. Abbas, N., Nadeem, S., Saleem, A., Malik, M. Y., Issakhov, A., & Alharbi, F. M. (2021). Models base study of inclined MHD of hybrid nanofluid flow over nonlinear stretching cylinder. Chinese Journal of Physics, 69, 109–117.
    Cited by: 235

  2. Nadeem, S., Abbas, N., & Malik, M. Y. (2020). Inspection of hybrid based nanofluid flow over a curved surface. Computer Methods and Programs in Biomedicine, 189, 105193.
    Cited by: 228

  3. Nadeem, S., Abbas, N., & Khan, A. U. (2018). Characteristics of three-dimensional stagnation point flow of hybrid nanofluid past a circular cylinder. Results in Physics, 8, 829–835.
    Cited by: 155

  4. Abbas, N., Saleem, S., Nadeem, S., Alderremy, A. A., & Khan, A. U. (2018). On stagnation point flow of a micropolar nanofluid past a circular cylinder with velocity and thermal slip. Results in Physics, 9, 1224–1232.
    Cited by: 122

  5. Abbas, N., Rehman, K. U., Shatanawi, W., & Malik, M. Y. (2022). Numerical study of heat transfer in hybrid nanofluid flow over permeable nonlinear stretching curved surface with thermal slip. International Communications in Heat and Mass Transfer, 135, 106107.
    Cited by: 108

Dr. N. Abbas’s research on hybrid nanofluid dynamics and magnetohydrodynamics has significantly advanced the understanding of thermal and flow transport phenomena, enabling innovations in energy efficiency, biomedical engineering, and sustainable industrial processes. His work bridges fundamental science and practical application, fostering global progress in advanced materials and fluid technologies.

Venkatesan Srinivasan| Nanomaterials | Young Scientist Award

Dr. Venkatesan Srinivasan| Nanomaterials | Young Scientist Award

Assistant Professor at Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technologyin India.

Dr. V. Srinivasan 🎓 is an Assistant Professor of Chemistry at Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India. His research focuses on the synthesis, characterization, and optimization of nanoprobes and small organic probes for applications in sensors, biological systems, and solar cells 🌞🧪. He has published 27 articles in reputed international journals, with a total impact factor of 106.9 📖✨. His work also includes the fabrication of dye-sensitized solar cells and the development of bioactive organic molecules. With 562 citations 📊 and an H-index of 13, Dr. Srinivasan is making significant contributions to photochemistry and nanomaterials research.

Professional Profile

🔍 Summary of Suitability:

Dr. V. Srinivasan is an ideal candidate for the Young Scientist Award due to his exceptional contributions to a, photochemistry, and energy research 🔬🌞. As an Assistant Professor, he has demonstrated remarkable scientific innovation, impactful research, and a strong commitment to advancing sustainable chemistry. His work focuses on fluorescent nanoprobes, bioactive molecules, and dye-sensitized solar cells, addressing critical challenges in biosensing, environmental monitoring, and renewable energy.

🎓 Education:

  • Ph.D. in Chemistry 🧪 – Specialized in nanomaterials and photochemistry.

  • Master’s in Chemistry (M.Sc.) 📚 – Advanced studies in chemical sciences.

  • Bachelor’s in Chemistry (B.Sc.) 🏫 – Foundation in fundamental chemistry concepts.

💼 Experience:

  • Assistant Professor 👨‍🏫 – Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai.

  • Researcher in Nanomaterials 🔬 – Expertise in synthesizing and characterizing nanoprobes for diverse applications.

  • Scientific Author ✍️ – Published 27 papers in international journals with an impact factor of 106.9.

  • Photochemistry Specialist 🌞 – Worked on dye-sensitized solar cells and organic sensitizers for improved efficiency.

  • Reviewer & Collaborator 🤝 – Engaged in 5 research collaborations and contributed to journal revisions.

 

Professional Development 🚀📖

Dr. V. Srinivasan 🎓 has continuously enhanced his expertise through extensive research and collaborations 🤝. As an Assistant Professor 👨‍🏫, he has contributed to the advancement of nanoprobes, bioactive molecules, and photochemistry 🌞. His professional growth includes publishing 27 high-impact journal articles 📖, achieving an H-index of 13 📊, and securing 562 research citations. He actively engages in interdisciplinary collaborations, refining innovative methodologies in nanotechnology 🔬. A dedicated member of IAENG (504612) 🏅, he stays updated with emerging trends. His work in fluorescent nanomhttps://chemicalscientists.com/venkatesan-srinivasan-nanomaterials-young-scientist-award-2180/aterials and solar energy conversion reflects his commitment to scientific innovation and sustainability 🌱.

Research Focus 🔍🤖

Dr. V. Srinivasan’s research revolves around nanomaterials and photochemistry 🔬🌞, focusing on the synthesis and characterization of fluorescent nanoprobes for applications in biosensors, solar cells, and environmental monitoring 🧪🌍. His work includes developing aggregation-induced emissive (AIE) nanodots for bioimaging 🧬, graphene oxide dots (GO dots) for explosive detection 💥, and carbon nanocubes (CNCs) for antibiotic sensing 💊. Additionally, he explores dye-sensitized solar cells (DSSC) with novel organic sensitizers to enhance efficiency ⚡. His recent focus is on synthesizing bioactive organic molecules and nanomaterials for biomedical applications, making significant contributions to sustainable and innovative chemistry 🌱🧑‍🔬.

🏆 Awards & Honors:

  • Young Scientist Award Nominee 🏅 – Recognized for contributions in nanomaterials and photochemistry.

  • Published in High-Impact Journals 📖 – 27 research papers with a total impact factor of 106.9.

  • Research Citations Achievement 📊 – 562 citations, H-index: 13, and i10-index: 14.

  • Active Research Collaborator 🤝 – Engaged in 5 interdisciplinary collaborations.

  • Professional Membership 🎓 – Member of IAENG (504612) for engineering and research excellence.

  • Expert Reviewer 📝 – Contributed to 23 journal revisions in reputed international publications.

Publication Top Notes:

📗 Green synthesis of zinc oxide nanoparticles using Brassica oleracea var. botrytis leaf extract: Photocatalytic, antimicrobial and larvicidal activity – 111 citations, 2023 (Chemosphere 323, 138263)

💡 Unravelling the effect of anchoring groups on the ground and excited state properties of pyrene using computational and spectroscopic methods – 58 citations, 2016 (PCCP 18(19), 13332-13345)

🔬 A simple and ubiquitous device for picric acid detection in latent fingerprints using carbon dots – 48 citations, 2020 (Analyst 145(13), 4532-4539)

🦠 Pyrene based Schiff bases: Synthesis, crystal structure, antibacterial and BSA binding studies – 46 citations, 2021 (JMS 1225, 129153)

♻️ Fuel waste to fluorescent carbon dots and its multifarious applications – 42 citations, 2019 (Sensors and Actuators B: Chemical 282, 972-983)

💠 Pyrene based D–π–A architectures: synthesis, density functional theory, photophysics and electron transfer dynamics – 38 citations, 2017 (PCCP 19(4), 3125-3135)

🌐 Nanostructured graphene oxide dots: synthesis, characterization, photoinduced electron transfer studies, and detection of explosives/biomolecules – 29 citations, 2018 (ACS Omega 3(8), 9096-9104)

🧬 Pyrene-based prospective biomaterial: In vitro bioimaging, protein binding studies and detection of bilirubin and Fe³⁺ – 28 citations, 2019 (SAA: Molecular and Biomolecular Spectroscopy 221, 117150)

AIE nanodots obtained from a pyrene Schiff base and their applications – 28 citations, 2017 (ChemistrySelect 2(4), 1353-1359)

⚛️ A combined experimental and computational characterization of D–π–A dyes containing heterocyclic electron donors – 24 citations, 2017 (JPPB A: Chemistry 332, 453-464)

🔋 A diminutive modification in arylamine electron donors: Synthesis, photophysics and solvatochromic analysis–towards the understanding of dye-sensitized solar cell performances – 20 citations, 2015 (PCCP 17(43), 28647-28657)

🩺 Evaluation of the anti-rheumatic properties of thymol using carbon dots as nanocarriers on FCA induced arthritic rats – 15 citations, 2021 (Food & Function 12(11), 5038-5050)

🧪 Facile synthesis of carbon nanocubes and its applications for sensing antibiotics – 14 citations, 2020 (JPPB A: Chemistry 403, 112855)

🔦 Light induced behavior of xanthene dyes with benzyl viologen – 11 citations, 2014 (Synthetic Metals 196, 131-138)

🧬 Miniscule modification of coumarin-based potential biomaterials: Synthesis, characterization, computational and biological studies – 7 citations, 2023 (JPPB A: Chemistry 445, 115044)

🧑‍💻 Computational, reactivity, Fukui function, molecular docking, and spectroscopic studies of a novel (E)-1-Benzyl-3-(2-(Pyrindin-2-yl) Hydrazono) Indolin-2-One – 6 citations, 2024 (Polycyclic Aromatic Compounds 44(9), 6263-6283)

🧲 Synthesis, crystal structure and protein binding studies of a binuclear copper (I) complex with triphenylphosphine-based dithiocarbazate – 6 citations, 2023 (Inorganic Chemistry Communications 157, 111195)

⚗️ A fluorescent chemosensor for selective detection of chromium (III) ions in environmentally and biologically relevant samples – 4 citations, 2024 (SAA: Molecular and Biomolecular Spectroscopy 316, 124286)

🧪 A comprehensive investigation of ethyl 2-(3-methoxybenzyl) acrylate substituted pyrazolone analogue: Synthesis, computational and biological studies – 4 citations, 2024 (Chemical Physics Impact 8, 100531)

🌱 Biomass-derived potential nano-biomaterials: Protein binding, anti-biofilm activity and bio-imaging – 3 citations, 2024 (JMS 1300, 137155)

🎯 Conclusion:

Dr. V. Srinivasan’s research excellence, scientific impact, and innovative contributions make him highly deserving of the Young Scientist Award. His pioneering work in nanomaterials, biosensors, and renewable energy showcases his potential as a leading young researcher shaping the future of scientific advancements. 🚀🔬