Yanhe Han | Environmental Chemistry | Editorial Board Member

Prof. Yanhe Han | Environmental Chemistry | Editorial Board Member

Dean | Beijing Institute of Petrochemical Technology | China

Han Yanhe is a highly cited researcher known for influential contributions in environmental engineering, catalytic materials development, advanced oxidation processes, and innovative wastewater treatment technologies. With a substantial record of 68 peer-reviewed publications, over 1,602 citations, and an h-index of 20, Han has established a strong global research presence characterized by consistent scientific impact and extensive multidisciplinary engagement. His work spans the design of integrated nitrogen and sulfur removal systems, including synergistic approaches combining sulfate reduction, sulfur-autotrophic denitrification, and micro-electrolytic pathways to achieve efficient treatment of complex and sulfate-rich wastewaters. Han has advanced understanding of the mechanistic interplay between sulfur-based electron donors and iron–carbon micro-electrolysis, contributing engineering strategies that enhance pollutant degradation and support scalable, sustainable water-treatment solutions. In the field of catalysis, he has contributed to the development of high-performance materials such as CeO₂/GO-co-doped MoS₂ composites, improving electrocatalytic hydrogen evolution and offering practical, cost-effective alternatives to noble-metal-based systems. His research portfolio further encompasses low-temperature plasma-driven oxidation for the mitigation of pharmaceutical and personal-care contaminants, environmental impact assessments of analytical detection methods, and intensified micro-electrolysis techniques tailored for highly toxic industrial waste streams. With collaborations spanning over 140 co-authors, Han has demonstrated a strong commitment to interdisciplinary research and scientific integration across chemistry, materials science, and environmental systems engineering. Many of his publications continue to accumulate significant citations, underscoring the relevance and applicability of his findings to both academic research and industrial practice. Through a combination of mechanistic insight, engineering innovation, and sustainability-focused design, Han Yanhe’s body of work contributes substantially to global efforts aimed at advancing clean-water technologies, enhancing catalytic efficiency, reducing environmental burdens, and supporting sustainable chemical engineering practices.

Profiles : Scopus

Featured Pulications
  1. Han, Y., Xu, H., Zhang, L., Ma, X., Man, Y., Su, Z., & Wang, J. (2023). An internal circulation iron–carbon micro-electrolysis reactor for aniline wastewater treatment: Parameter optimization, degradation pathways and mechanism. Chinese Journal of Chemical Engineering, 63(11), 96–107.

  2. Han, Y., Zhang, S., Zhang, X., Wu, C., & An, R. (2020). Optimization of the conditions for degradation of hydrolyzed polyacrylamide using electro-coagulation. Desalination and Water Treatment, 179, 148–159.

  3. Han, Y., Zhang, S., Xiaofei, Z., & Chen, J. (2020). Electrochemical oxidation of Hydrolyzed Polyacrylamide (HPAM) at Ti/SnO₂-Sb₂O₃/β-PbO₂ anode: Degradation kinetics and mechanisms. International Journal of Electrochemical Science, 15(4), 3382–3399.

  4. Han, Y., Wang, H., Wei, M., … Ma, X. (2025). Advanced low-temperature plasma-driven oxidation for mitigating pharmaceutical and personal care products in wastewater: Mechanisms, influencing factors, and reactor configurations.

    Prof. Yanhe Han advances sustainable environmental engineering through innovative electrochemical and micro-electrolysis technologies for efficient pollutant removal. His work delivers practical solutions for industry while contributing to global efforts toward cleaner water systems and a healthier environment.

Luciana Rocha Santos | Environmental Engineering | Best Researcher Award

Mrs. Luciana Rocha Santos | Environmental Engineering | Best Researcher Award

PhD Candidate at FEEVALE University , Brazil.

🔬 Short Biography 🌿💊📚

Luciana R. Santos is a passionate and driven Ph.D. candidate in Environmental Quality 🌱, committed to advancing sustainable technologies. With a strong academic foundation in Chemical Engineering ⚗️ and a Master’s degree in Materials Technology 🧪, she has developed expertise in innovative solutions for environmental challenges. Her research delves into developing advanced coatings, functional biomaterials, and exploring pyrolysis processes for converting industrial waste into bio-oil ♻️. Luciana plays a vital role in R&D projects that intersect material science and green technology 🌍. She is known for her methodical approach, scientific curiosity, and commitment to reducing industrial environmental impacts through innovative material applications. Her academic journey and hands-on research experience position her as a rising expert in sustainable engineering and environmental science 🚀.

PROFILE 

ORCID 

🔍 Summary of Suitability:

Luciana R. Santos exemplifies the qualities of a top-tier researcher, making her an excellent nominee for the Best Researcher Award. With a robust academic foundation—B.Sc. in Chemical Engineering, M.Sc. in Materials Technology, and current Ph.D. work in Environmental Quality—she has demonstrated academic excellence and a deep commitment to sustainable science. 🌱📚 Her research spans coatings, biomaterials, and waste-to-energy technologies, areas that have significant societal and environmental impact.

Luciana actively contributes to high-impact R&D projects and recently co-authored a peer-reviewed journal article titled “Strategic Techniques for Upgrading Bio‐Oil from Fast Pyrolysis: A Critical Review” in a reputable journal, showing her engagement with cutting-edge scientific advancements. 📘 Her interdisciplinary approach, combining engineering, environmental science, and materials technology, speaks to her versatility and innovation. She works with industrial waste pyrolysis to produce bio-oil, addressing global challenges like waste management and clean energy. ⚡♻️

📘 Education

Luciana R. Santos began her academic journey with a degree in Chemical Engineering ⚙️, laying the foundation for her expertise in industrial and environmental processes. Building on this, she earned a Master’s in Materials Technology 🧫, where she explored the development and application of advanced materials. Currently, she is pursuing her Ph.D. in Environmental Quality 🌿, focusing on sustainable innovations and eco-friendly solutions to modern challenges. Throughout her career, Luciana has been actively involved in R&D projects that integrate material science, sustainability, and engineering. Her practical experience includes working on cutting-edge technologies such as biomaterial development, high-performance coatings, and pyrolysis of industrial waste for bio-oil production 🔥. Her academic background and research experience make her a valuable contributor to multidisciplinary environmental initiatives 🧠.

Professional Experience

Luciana R. Santos has continually advanced her professional development through dedicated academic pursuits and impactful research involvement 🎓. Her transition from Chemical Engineering to Materials Technology and finally to Environmental Quality reflects her evolving focus toward sustainable development 🌍. By participating in interdisciplinary R&D projects, she has cultivated a deep understanding of material-environment interactions and their potential in circular economy models 🔄. Luciana has gained significant expertise in handling real-world challenges by developing biomaterials, protective coatings, and alternative energy solutions such as bio-oil from waste via pyrolysis 🔬. She frequently engages in academic conferences, workshops, and collaborative initiatives that foster innovation and scientific networking 🤝. Her professional path demonstrates a commitment to continual learning, applied research, and leadership in sustainability-focused material engineering 💡.

Research Focus 🔍🤖

Luciana R. Santos focuses her research on the intersection of materials science and environmental engineering 🌿. Her core areas include developing sustainable coatings, biomaterials for medical and environmental applications, and advanced waste-to-energy technologies 🔁. A significant portion of her work centers around the pyrolysis of industrial waste to produce bio-oil, contributing to renewable energy and waste valorization efforts ⚡. She explores how modified materials can improve environmental quality and extend the life of infrastructure through protective solutions 🛡️. Her multidisciplinary approach brings together chemistry, engineering, and environmental science to create practical innovations that reduce ecological footprints 🌱. Luciana’s work is aligned with the principles of green chemistry and the circular economy, targeting eco-efficient industrial practices. Her research contributes significantly to the sustainable development goals (SDGs), particularly those related to clean energy, responsible consumption, and climate action 🌎.

Awards and Honors 🏆🎖️

  • 🏆 Ph.D. Scholarship in Environmental Quality

  • 🥇 Master’s Research Fellowship in Materials Technology

  • 🎖️ Recognition for Excellence in Chemical Engineering Studies

  • 📜 Participation in National R&D Collaborative Projects

  • 🧪 Honored for Innovation in Pyrolysis and Bio-oil Production Research

Publications & Citations 📚

📘 Strategic Techniques for Upgrading Bio‐Oil from Fast Pyrolysis: A Critical ReviewBiofuels, Bioproducts and Biorefining 🛢️📄 | 🗓️ Published: 2025-05-08 | ✍️ Authors: Luciana R. Santos, Daniela R. Araujo, Marco A.S. Rodrigues | 🔗 DOI: 10.1002/bbb.2789 | 📊

🔍 Conclusion:

Luciana R. Santos is a highly deserving candidate for the Best Researcher Award. Her scientific rigor, impactful research, and commitment to sustainability position her as a forward-thinking leader in environmental and materials science. 🌍💡 Her contributions not only advance academic knowledge but also offer practical solutions to real-world environmental challenges. Awarding her would be a recognition of both her achievements and her potential to lead future innovations in sustainable technologies. 🚀👏