Alexandr Ozerin | Nanotechnology | Best Researcher Award

Assist. Prof. Dr. Alexandr Ozerin | Nanotechnology | Best Researcher Award

 Volgograd State Technical University | Russia

A. S. Ozerin is an emerging researcher with growing contributions in the fields of nanomaterials, polymer science, and materials chemistry, with a research profile that includes 15 peer-reviewed publications, an h-index of 4, and 27 citations, demonstrating both steady scholarly productivity and increasing academic influence. The work explores nanoscale material synthesis, polymer-assisted nanoparticle stabilization, and advanced hybrid material systems, with recent research addressing the pseudomatrix synthesis behavior of nanoscale silver iodide particles in the presence of chitosan, reflecting a strong focus on sustainable material design, controlled crystallization, and functional nanostructures. This research direction aligns closely with current global priorities in the development of environmentally responsible materials, bio-derived polymer supports, and application-driven nanocomposites with potential relevance in antimicrobial applications, chemical sensing, and next-generation functional surfaces. A notable characteristic of Ozerin’s academic trajectory is active collaboration, evidenced by co-authorship with 30 researchers working across diverse scientific disciplines, enabling methodological depth, advanced characterization strategies, and interdisciplinary knowledge exchange, which collectively contribute to the rigor and impact of the published work. The publication record shows a progression from foundational studies toward more complex applied research frameworks, signaling a developing research identity focused on innovation in material synthesis pathways and structure–property optimization. While still at an early stage, the citation pattern and continued publication activity indicate upward momentum and growing recognition within the scientific community. The research conducted not only contributes to fundamental understanding of polymer nanoparticle interactions but also supports the advancement of applied materials science where functionality, sustainability, and nanoscale precision are key factors. With continued engagement in interdisciplinary research, refinement of experimental approaches, and increasing publication visibility, Ozerin’s work holds potential to further expand its academic reach and support broader technological and societal applications in the evolving field of advanced material systems.

Profiles : Scopus | ORCID

Featured Publications

Donetskova, L. Yu., Ozerin, A. S., Mikhailyuk, A. E., Radchenko, F. S., Andreev, D. S., Titova, E. S., Babkin, V. A., & Novakov, I. A. (2023). Hydrolysis of polyacrylamide in the presence of nano-sized copper particles. Russian Journal of General Chemistry.

Krotikova, O. A., Ozerin, A. S., Radchenko, Ph. S., Abramchuk, S. S., & Novakov, I. A. (2017). Aqueous phase synthesis of silver iodide nanoparticles from a polyacrylic acid–silver complex. Colloid and Polymer Science, 295(1), 99–105.

Ustyakina, D. R., Chevtaev, A. S., Tabunshchikov, A. I., Ozerin, A. S., Radchenko, F. S., & Novakov, I. A. (2019). Complexes of polyethyleneimine with Cu²⁺ ions in aqueous solutions as precursors for obtaining copper nanoparticles. Polymer Science – Series B, 61(3), 261–265.

Krotikova, O. A., Ozerin, A. S., & Radchenko, F. S. (2017). Polyethylenimine complexes with silver ions in aqueous solutions as precursors for synthesis of monodisperse silver iodide particles. Polymer Science, Series A, 59, 288–294.

Vinogradov, V. S., Ozerin, A. S., Radchenko, Ph. S., & Novakov, I. A. (2025). Pseudomatrix synthesis characteristics of nanoscale silver iodide particles in the presence of chitosan. Iranian Polymer Journal.

A. S. Ozerin’s research advances the understanding and controlled synthesis of nanoscale materials, enabling progress in polymer–nanoparticle systems and functional material design. This work supports future innovations in sensing, catalysis, and antimicrobial applications with potential societal and industrial impact.

M.R.Rajan | Nanotechnology | Best Researcher Award

Prof. Dr. M.R. Rajan | Nanotechnology | Best Researcher Award

Senior Professor | The Gandhigram Rural Institute- Deemed to be University | India

Dr. M. R. Rajan is a senior biologist whose four decades of academic service have significantly advanced environmental biotechnology, aquatic toxicology, nanomaterial-based interventions, and microbial ecology. As Senior Professor in the Department of Biology at the Gandhigram Rural Institute (Deemed to be University), Tamil Nadu, he has established a robust research portfolio addressing pollutant dynamics, eco-toxicological risks, sustainable aquaculture practices, and innovative bioremediation technologies. His early investigations on tannery effluents, sewage-supported fish culture, and organic–inorganic soil amendments contributed practical solutions for rural environmental management, while his recent work focuses on nanoparticle–organism interactions, green synthesis of metal and carbon-based nanomaterials, and the functional role of intestinal microbiota in enhancing fish growth and health. Dr. Rajan has authored numerous book chapters published by CRC Press, BP International, Agrobios, Science Publications, and other reputed outlets, highlighting themes such as wastewater purification, phytoremediation, antibacterial nanomaterials, and conservation biology. His extensive journal contributions many indexed in Scopus span topics including carbon quantum dots, silver and copper oxide nanoparticles, probiotic bacterial isolation, biomedical potential of graphene-based nanostructures, and sustainable valorisation of biological waste. His studies integrate biochemical, haematological, enzymatic, and ecotoxicological assessments, providing scientifically grounded insights for improving aquaculture safety, environmental restoration, and resource circularity. Through interdisciplinary collaborations and mentorship, he has strengthened research capacity in biological sciences and contributed to solutions addressing pollution, environmental health, and rural sustainability. His work continues to bridge laboratory innovation with societal needs, reinforcing his standing as a respected scholar and contributor to globally relevant biological research. His academic influence is reflected in 225 citations, 44 documents, and an h-index of 9, underscoring his meaningful contributions to contemporary biological science.

Profiles: Scopus | ORCID | LinkedIn

1. Muthuswami Ruby Rajan, & Chinnadurai Kaleeswaran. (2024). Evaluation of disparate multiplicities of copper oxide nanoparticles integrated feed on the growth and hematology of koi carp. Journal of Toxicological Studies.

2. Muthuswami Ruby Rajan, Rekha, M., & Dayana Senthamarai, M. (2024). Incorporation of Nano Selenium in fish diet and assessment of growth performance and biochemical criteria of Labeo rohita. Journal of Environmental Nanotechnology.

3. Muthuswami Ruby Rajan, & Dayana Senthamarai, M. (2023). Comparative study of green and chemical-synthesized selenium nanoparticles and its antibacterial assay against fish pathogens. Journal of Nanoscience and Technology.

4. Muthuswami Ruby Rajan, & Baluchamy Meenakumari. (2023). Impact of differential quantities of magnesium oxide nanoparticles on growth, haematological and biochemical characteristics of common carp Cyprinus carpio. International Journal of Creative Research Thoughts.

5. Rajan, M. R., & Brindha, G. (2022). Evaluation of dissimilar intestinal bacteria incorporated feeds on growth of ornamental fish Swordtail (Xiphophorus helleri). Letters in Applied Microbiology, 75(1).

P. ABISHAKE DAVID | Nanomaterials | Best Researcher Award

 

Mr. P. ABISHAKE DAVID | Nanomaterials | Best Researcher Award

Ph.D. Research Scholar at T.B.M.L. College, Porayar in India.

P. Abishake David 🎓 is a dedicated Ph.D. Research Scholar at T.B.M.L. College, Porayar (affiliated with Annamalai University), specializing in the development of metal-organic frameworks (MOFs) for electrochemical energy storage ⚡. With a first-class distinction in his postgraduate studies 🏅, he has successfully synthesized Cu-MOF and Co-MOF for supercapacitor applications, utilizing advanced techniques such as cyclic voltammetry, UV-Vis, FT-IR, and XPS 🧪. As a reviewer for the Journal of Inorganic and Organometallic Polymers and Materials and an active conference organizer 🌐, he is committed to advancing sustainable energy solutions 🔋 through innovative materials research.

Professional Profile
Suitability for the Researcher Award

P. Abishake David 🎓 is highly suitable for the Best Researcher Award due to his focused and innovative contributions to the field of Electrochemical Energy Storage 🔋. His research specializes in the synthesis and electrochemical characterization of Metal-Organic Frameworks (MOFs) 🧪, particularly Cu-MOF and Co-MOF, aimed at enhancing supercapacitor performance ⚡. He has applied advanced techniques like Cyclic Voltammetry, Galvanostatic Charge-Discharge, and Impedance Spectroscopy 🔬 to optimize material properties for sustainable energy solutions 🌱.

🎓 Education

  • ✅ Completed Postgraduate (PG) in Physical Sciences with First Class and Distinction 🏅
  • ✅ Qualified Ph.D. entrance exams at Bharathidasan University and Annamalai University 📜
  • 🎯 Currently pursuing Ph.D. Research at T.B.M.L. College, Porayar (Affiliated to Annamalai University) 🏛️
  • 📖 Preparing for CSIR NET Exam in Physical Science 🧠

💼 Experience

  • 🧪 Research focused on Metal-Organic Frameworks (MOFs) for Electrochemical Energy Storage 🔋
  • 🧰 Hands-on experience with techniques like UV-Vis, FT-IR, FT-Raman, XPS, Cyclic Voltammetry, Galvanostatic Charge-Discharge, and Impedance Spectroscopy 🔬
  • ⚡ Successfully synthesized and optimized Cu-MOF and Co-MOF for supercapacitor applications 🔄
  • 🌍 Served as a Technical Member in organizing an International Conference 📅
  • 📝 Reviewer for the Journal of Inorganic and Organometallic Polymers and Materials 📚
  • 🤝 Collaborated with Dr. Manikandan Ayyar from KAHE, Coimbatore 🔗

 

Professional Development 🚀📖

P. Abishake David 🎓 continuously advances his professional journey through dedicated research in Metal-Organic Frameworks (MOFs) for energy storage 🔋. He has gained hands-on expertise in advanced analytical techniques 🧪 such as UV-Vis, FT-IR, XPS, and Cyclic Voltammetry to enhance supercapacitor performance ⚡. Actively preparing for the CSIR NET exam 📖, he aims to strengthen his academic credentials while contributing innovative solutions to sustainable energy 🌍. Serving as a reviewer 📝 and participating in international conferences 🌐, Abishake builds collaborations 🤝 and sharpens his skills, remaining committed to pushing the boundaries of electrochemical materials research 🔬.

 

Research Focus 🔍🤖

P. Abishake David 🎓 focuses his research on the Electrochemical Energy Storage category 🔋, specializing in the synthesis and optimization of Metal-Organic Frameworks (MOFs) 🧪. His work targets developing high-performance materials like Cu-MOF and Co-MOF to improve supercapacitor efficiency ⚡. Using advanced techniques such as Cyclic Voltammetry, Galvanostatic Charge-Discharge, and Impedance Spectroscopy 🔬, he studies material behavior for sustainable energy applications 🌱. His research area extends to Nanomaterials, Graphene, and 2D Materials 🌐, with the goal of creating innovative solutions for next-generation power storage technologies 🚀, supporting the global demand for renewable energy 🌍.

🏆 Awards & Honors

  • 🥇 Award Nominee for Best Researcher Award by Chemicalscientists.com 🧪
  • 🥈 Award Nominee for Best Research Scholar Award 🎓
  • 🌐 Served as a Technical Member in organizing an International Conference on advanced research topics 📅
  • ✍️ Appointed as a Reviewer for the Journal of Inorganic and Organometallic Polymers and Materials 📚

 

Publication Top Notes:

📄 “A study on the facile synthesis of Cu-influenced organic framework and their characteristic properties”M Jothibas, PA David, S Srinivasan, P Emerson, A Mathivanan | 🗞️ Journal of Molecular Structure 1320, 139429 | 📅 2025 | 🔍 Cited by: 1

📄 Publication: “Electrochemical Performance of Metal-Organic Frameworks for Supercapacitor Applications” 🧪 | Published in: 2023 📅 | Cited by: 1 🔍

📌 Conclusion:

Considering his specialized research in advanced energy materials, early but impactful publication record, peer-review contributions, and active participation in international academic activities 🌍, P. Abishake David is a deserving candidate for the Best Researcher Award 🏅. His work directly supports global efforts toward sustainable and efficient energy technologies, reflecting both innovation and societal relevance 🌱⚡.