Emil Babić | Materials Chemistry | Best Researcher Award

Prof. Dr. Emil Babić | Materials Chemistry | Best Researcher Award

professor |  University of Zagreb | Croatia

Prof. Emil Babić is a distinguished Croatian physicist with a long and impactful career in condensed matter physics and materials science. Educated at the Faculty of Science, University of Zagreb, he went on to become a leading academic and researcher, contributing significantly to the study of high-entropy alloys, metallic glasses, and superconducting materials. His work has been published in high-impact journals, with over 50 years of scholarly contributions shaping the field. Prof. Babić has played a central role in mentoring generations of physicists, guiding around 50 theses, 13 doctoral dissertations, and 5 post-doctoral fellows. His expertise in electronic structures, alloy behavior, and advanced materials has been widely recognized through his publications and collaborations with international research groups. With a career that spans fundamental discoveries and applied innovations, Prof. Babić stands as a respected figure in Croatian and global physics, celebrated for his scientific rigor, mentorship, and dedication to advancing knowledge.

Professional Profile 

Prof. Emil Babić pursued his entire academic education at the Faculty of Science, University of Zagreb, Croatia, where he developed a deep foundation in physics. He earned his Master of Science degree in Physics , marking the beginning of his lifelong journey into advanced materials and solid-state research. His early academic training combined theoretical and experimental approaches, equipping him with the tools to explore the structural and electronic properties of complex alloys and materials. Building on his master’s research, he later obtained a PhD in Physics from the same institution, further cementing his expertise in condensed matter physics. His doctoral work laid the groundwork for his future research on metallic glasses, high-entropy alloys, and superconductivity. The rigorous academic environment of Zagreb’s Faculty of Science, combined with his own intellectual curiosity, enabled him to emerge as a scientist of international recognition, contributing broadly to physics and material sciences.

Experience 

Prof. Emil Babić has accumulated decades of rich academic and research experience, primarily within the Department of Physics, Faculty of Science, University of Zagreb. His career spans during which he served in both teaching and research positions. He has been a central figure in advancing Croatian physics research, contributing not only through publications but also by actively participating in collaborative international projects. Prof. Babić has mentored around 50 theses, 13 doctoral dissertations, and 5 post-doctoral researchers, leaving a strong academic legacy. His expertise has led him to engage in groundbreaking studies on superconductivity, metallic glasses, and high-entropy alloys, often collaborating with prominent international scientists. In addition to research, he has played an essential role in curriculum development, conference participation, and the organization of scientific activities, thus enriching the academic and research landscape in Croatia and beyond. His experience reflects both leadership and innovation.

Professional Development

Throughout his career, Prof. Emil Babić has actively pursued professional development, ensuring continuous growth as a researcher, mentor, and collaborator. He has remained engaged with the international scientific community by publishing influential research articles, contributing to conferences, and co-authoring studies with physicists from Europe and beyond. His professional journey also included securing academic scholarships and participating in exchange programs, which broadened his perspective on global scientific challenges. Importantly, Prof. Babić fostered a strong academic culture within the University of Zagreb, promoting interdisciplinary approaches to physics and materials science. He also took on organizational roles in scientific conferences, strengthening the visibility of Croatian research in the global arena. By mentoring young researchers and doctoral candidates, he continuously developed his leadership and supervisory skills, adapting to evolving methodologies in physics. His career reflects a balance of independent research, collaborative teamwork, and dedication to professional growth within academia.

Skills & Expertise

Prof. Emil Babić’s expertise spans a broad spectrum of condensed matter physics and materials science, with particular specialization in high-entropy alloys, metallic glasses, superconductivity, and electronic structures. His deep knowledge of advanced experimental techniques has enabled him to study phase transitions, bulk glass-forming ability, and the role of doping in improving material properties. His expertise extends to both theoretical analysis and laboratory-based experimentation, making him a versatile scientist. In addition, Prof. Babić has demonstrated strong mentorship and supervisory skills, having guided numerous graduate and doctoral students toward successful academic careers. He is adept at collaborative, cross-disciplinary research, working with international teams on complex projects. His ability to bridge fundamental physics with applied research highlights his innovative approach. Moreover, his publication record showcases his capacity to contribute impactful insights into material design, alloy characterization, and superconductivity, solidifying his reputation as a skilled and knowledgeable leader in his field.

Resarch Focus

Prof. Emil Babić’s research focus lies primarily in condensed matter physics, with an emphasis on metallic glasses, high-entropy alloys, and superconducting materials. His studies investigate the structural, electronic, and magnetic properties of these complex systems, aiming to understand their behavior under varying physical conditions. A recurring theme in his research is the transition from high-entropy to conventional alloys, where he has explored questions of stability, performance, and material optimization. Additionally, he has studied the enhancement of superconducting properties through nanostructuring and doping, contributing valuable insights to applied physics. His work is not only of theoretical importance but also holds technological significance, particularly in energy storage, advanced materials, and industrial applications. By publishing in leading journals and collaborating with international experts, Prof. Babić has advanced the global understanding of how alloys can be designed and manipulated to achieve desirable physical and functional properties.

Awards & Recognitions

Prof. Emil Babić’s long and impactful career has been recognized through academic honors, scholarships, and professional achievements. Over the past five decades, he has received recognition for both his scientific output and his contributions to academic mentorship. His research has been published in high-impact journals such as Journal of Applied Physics, Materials, Journal of Alloys and Compounds, and Europhysics Letters, which itself is a recognition of the international value of his work. He has also been invited to collaborate with international teams, highlighting his reputation as a trusted expert in physics. At the University of Zagreb, his role in mentoring over 50 theses and 13 doctoral dissertations has been celebrated as a vital contribution to the academic community. Furthermore, his involvement in organizing scientific conferences and contributing to research networks has earned him respect and acknowledgment, both within Croatia and internationally, as a leader in condensed matter physics.

Publication Top Notes 

Title: Mechanism of Enhancement in Electromagnetic Properties of MgB2 by Nano SiC Doping
Authors: SX Dou, O Shcherbakova, WK Yoeh, JH Kim, S Soltanian, XL Wang, E Babić
Year: 2007
Citations: 370

Title: High-transport critical current density above 30 K in pure Fe-clad MgB2 tape
Authors: S Soltanian, XL Wang, I Kušević, E Babić, AH Li, MJ Qin, J Horvat, HK Liu
Year: 2001
Citations: 232

Title: Superconductivity in zirconium-nickel glasses
Authors: E Babić, R Ristić, M Miljak, MG Scott, G Gregan
Year: 1981
Citations: 75

Title: Production of large samples of ultra-rapidly quenched alloys of aluminium by means of a rotating mill device
Authors: E Babić, E Girt, R Krsnik, B Leontic
Year: 1970
Citations: 64

Title: Correlation between doping induced disorder and superconducting properties in carbohydrate doped MgB2
Authors: JH Kim, SX Dou, S Oh, M Jerčinović, E Babić, T Nakane, H Kumakura
Year: 2008
Citations: 58

Title: Temperature dependent impurity resistivity in Al-based 3-d transition metal alloys
Authors: E Babić, R Krsnik, B Leontić, M Očko, Z Vučić, I Zorić, E Girt
Year: 1972
Citations: 50

Title: Hall effect and electronic structure of glassy Zr 3d alloys
Authors: J Ivkov, E Babić, RL Jacobs
Year: 1984
Citations: 49

Title: Sugar as an optimal carbon source for the enhanced performance of MgB2 superconductors at high magnetic fields
Authors: OV Shcherbakova, AV Pan, JL Wang, AV Shcherbakov, SX Dou, E Babić
Year: 2008
Citations: 47

Title: Stoner excitations in the strong itinerant amorphous ferromagnets FexNi80−xB18Si2 and Fe80B20
Authors: E Babić, Ž Marohnić, EP Wohlfarth
Year: 1983
Citations: 43

Title: The influence of pinning centres on magnetization and loss in Fe-Ni-B-Si amorphous alloys
Authors: J Horvat, Ž Marohnić, E Babić
Year: 1989
Citations: 42

Title: Magnetoresistance and V-I curves of Ag-sheathed (Bi,Pb tape)
Authors: E Babić, I Kušević, SX Dou, HK Liu, QY Hu
Year: 1994
Citations: 41

Title: Synthesis, structural characterization and magnetic properties of iron boride nanoparticles with or without silicon dioxide coating
Authors: M Mustapić, D Pajić, N Novosel, E Babić, K Zadro, M Cindrić, J Horvat
Year: 2010
Citations: 38

Title: Correlation between mechanical, thermal and electronic properties in Zr–Ni, Cu amorphous alloys
Authors: R Ristić, M Stubičar, E Babić
Year: 2007
Citations: 38

Title: Phase transformations during isochronal annealing of Fe40Ni40B20 glass
Authors: M Stubičar, E Babić, D Subašić, D Pavuna, Ž Marohnić
Year: 1977
Citations: 38

Prof. Emil Babić demonstrates exceptional research excellence in condensed matter physics and materials science, with impactful publications, mentorship achievements, and contributions to alloy and superconductivity research. His long-standing academic leadership and pioneering studies on metallic glasses and high-entropy alloys position him as a highly deserving candidate for the Best Researcher Award. Strengthening industry impact and international recognition could further solidify his profile, but his current record already reflects outstanding scientific excellence and influence.

Chuanlin Wang | Materials Chemistry | Best Researcher Award

Dr. Chuanlin Wang | Materials Chemistry | Best Researcher Award

Director of Smart Construction Major at Shantou University, China.

🔬 Short Biography 🌿💊📚

Dr. Chuanlin Wang 🎓 is a distinguished civil engineer and researcher currently serving as a Lecturer in the Department of Civil and Environmental Engineering at Shantou University, China 🇨🇳. With a strong academic background in civil engineering, he earned his Ph.D. from the University of Leeds 🇬🇧 and his B.A. from the Dalian University of Technology 🇨🇳. His professional focus centers around innovative concrete materials 🧱, particularly in enhancing performance under marine conditions 🌊. Dr. Wang’s work contributes significantly to developing ultra-high-performance concrete, fiber-reinforced composites, and structure enhancement techniques. His impactful research is backed by key provincial grants 🧪 and has led to numerous peer-reviewed publications 📚 in international journals. Passionate about infrastructure durability and sustainability, he explores corrosion mechanisms, admixtures, and prefabricated building technologies. Dr. Wang continues to drive scientific progress in concrete technology, influencing structural resilience and green building practices globally 🌍.

PROFILE 

ORCID 

🔍 Summary of Suitability:

Dr. Chuanlin Wang combines top-tier academic credentials (Ph.D. from University of Leeds 🎓) with a proven track record as a Lecturer at Shantou University 🏫. His specialized focus on marine-durable concretes and advanced cementitious composites directly addresses critical infrastructure challenges 🌊🧱. Consistent success in securing competitive provincial grants 💰 and leading interdisciplinary teams 🤝 demonstrates both vision and leadership—key traits of an outstanding researcher.

📘 Education & Experience

🎓 Education:

  • 📘 Ph.D. in Civil Engineering – University of Leeds, UK (2012.9 – 2016.9)

  • 📗 B.A. in Civil Engineering – Dalian University of Technology, China (2007.9 – 2012.6)

🧑‍🏫 Professional Experience:

  • 🏫 Lecturer, Department of Civil and Environmental Engineering, Shantou University (2017.2 – Present)

Professional Development 🚀📖

Dr. Chuanlin Wang’s professional development reflects a deep dedication to both academic excellence and engineering innovation 🏗️. After earning his doctoral degree in the UK 🇬🇧, he returned to China to serve at Shantou University, where he nurtures talent and leads cutting-edge research in civil engineering 🏢. Over the years, he has built expertise in concrete performance improvement, particularly in challenging marine environments 🌊. His collaborative and interdisciplinary research includes state-funded projects focusing on sulphoaluminate cement, fiber-reinforced materials, and prefabricated structures 🧪. With numerous high-impact publications in international journals 📖, Dr. Wang remains engaged in knowledge dissemination and professional growth. His development is marked by a clear trajectory toward enhancing structural durability and resilience, while supporting sustainable infrastructure goals 🌱. Through ongoing grants, mentoring, and academic contributions, he continually upgrades his skills and impact in both educational and research domains 📚🧑‍🔬.

Research Focus 🔍🤖

Dr. Chuanlin Wang’s research focuses on advanced concrete materials within civil engineering 🧱. He is particularly interested in the behavior of concrete exposed to marine environments 🌊, where corrosion and durability are key challenges. His work explores the development of ultra-high-performance concrete (UHPC) and fiber-reinforced materials 🧵 that offer enhanced mechanical properties and longevity. Additionally, Dr. Wang is an expert in sulphoaluminate cement systems, which are known for rapid strength gain and environmental benefits ♻️. His recent studies investigate the impact of salt ions and seawater concentration on cement hydration and durability, making valuable contributions to marine construction technology 🚢. Prefabricated building systems 🏗️ and structural reinforcement techniques are also central to his interests, aligning with global efforts in sustainable and resilient infrastructure development. By integrating materials science and structural design, Dr. Wang advances the frontiers of construction engineering with a focus on performance, sustainability, and innovation 🌍.

Awards and Honors 🏆🎖️

🏅 Awards & Recognitions:

  • 🧪 2023: Grant from Guangdong Provincial Natural Science Foundation – ¥100,000

  • 🔬 2021: Awarded Guangdong Provincial Junior Innovative Talents Project – ¥30,000

  • 📑 Multiple publications in high-impact journals like Materials, Construction and Building Materials, and Journal of Materials in Civil Engineering

Publications & Citations 📚

  1. 📘 2025 | Seawater-Activated Mineral Synergy in Sulfoaluminate Cement: Corrosion Resistance Optimization via Orthogonal Design 🔬

  2. 📗 2024 |  Multi-technique Analysis of Seawater Impact on Calcium Sulphoaluminate Cement Mortar 🧪

  3. 📘 2025 |  Influence of Seawater and Salt Ions on the Properties of Calcium Sulfoaluminate Cement 🌊

  4. 📙 2016 | Retrofitting of Masonry Walls Using a Mortar Joint Technique; Experiments and Numerical Validation 🏗️

  5. 📕 2021 |  Influence of Steel Fiber Shape and Content on the Performance of Reactive Powder Concrete (RPC) 🧵

  6. 📘 2021 | Influence of Seawater Concentration on Early Hydration of CSA Cement – A Preliminary Study ⚗️

  7. 📘 2021 |Seismic Performance of Precast Columns with Two Different Connection Modes 🚧

🔍 Conclusion:

With a record of groundbreaking research, successful funding, and dedication to education and sustainability, Dr. Wang exemplifies the qualities of a “Best Researcher.” His work not only deepens scientific understanding but also delivers practical solutions for resilient, eco-conscious infrastructure 🌍🏆.