Devesh Barshilia | Nanotechnology | Best Researcher Award

Dr. Devesh Barshilia | Nanotechnology | Best Researcher Award

Assistant Researcher | National Chung Cheng University | Taiwan

Dr. Devesh Barshilia is an emerging multidisciplinary scientist whose research spans biosensors, nanophotonics, optofluidic platforms, semiconductor optoelectronics, and integrated photonic sensing systems, positioned at the intersection of materials science, photonics, and biomedical engineering to develop high-performance, low-cost, and ultra-sensitive detection technologies for healthcare, environmental monitoring, and analytical diagnostics. A major focus of his work is the design and optimization of planar waveguide–based optofluidic sensors for rapid, real-time, and label-free refractive index detection, with his highly cited publication on waveguide sensors highlighting his strong impact in optical detection research. He has also made notable advances in particle plasmon resonance integrated biosensing by synergizing plasmonic field enhancement with guided-wave optics to achieve superior biochemical sensitivity, while his contributions to guided-mode resonance (GMR) biosensing demonstrate his ability to engineer compact, precise, and clinically relevant optical devices. His work on nanogold-linked immunosorbent assays is especially impactful, enabling improved early detection of sepsis-associated biomarkers such as procalcitonin for point-of-care diagnostics. Parallel to his biosensing developments, Dr. Barshilia has produced influential research in semiconductor photonic devices including GeSn-based short-wave infrared phototransistors, graphene-based flexible photodetectors, and engineered silicon-dioxide nanostructures, with publications in leading journals such as Optics Express, Optics Letters, Advanced Optical Materials, and Nano Letters. By integrating waveguide-enhanced spectroscopy, nanoplasmonics, and advanced biosensing microarchitectures, he is advancing miniaturized diagnostic tools for DNA, protein, and biomarker detection. With 183 citations, an h-index of 6, and a steadily expanding publication record, Dr. Barshilia is establishing himself as a rising contributor to next-generation biosensing and integrated photonic diagnostics.

Profiles: ORCID | Google Scholar | LinkedIn | ResearchGate

Featured Publications

Barshilia, D., Huang, J.-J., Komaram, A. C., Chen, Y.-C., Chen, C.-D., Syu, M.-Y., Chao, W.-C., Chau, L.-K., & Chang, G.-E. (2024). Ultrasensitive and rapid detection of procalcitonin using waveguide nanogold-linked immunosorbent assay for early sepsis diagnosis.

Barshilia, D., Komaram, A. C., Chen, P.-C., Chau, L.-K., & Chang, G.-E. (2022). Slab waveguide-based particle plasmon resonance optofluidic biosensor for rapid and label-free detection. Analyst, 147(20), 4417–4425.

Barshilia, D., Chau, L.-K., & Chang, G.-E. (2020). Low-cost planar waveguide-based optofluidic sensor for real-time refractive index sensing. Optics Express, 28(19), 27337–27345.

Barshilia, D., Komaram, A. C., Chau, L.-K., & Chang, G.-E. (2024). Waveguide-enhanced nanoplasmonic biosensor for ultrasensitive and rapid DNA detection. Micromachines, 15(9), 1169.

Yeh, C.-T., Barshilia, D., Hsieh, C.-J., Li, H.-Y., Hsieh, W.-H., & Chang, G.-E. (2021). Rapid and highly sensitive detection of C-reactive protein using a robust self-compensated guided-mode resonance biosensing system for point-of-care applications. Biosensors, 11(12), 523.

Dr. Devesh Barshilia’s innovative work in biosensors, optofluidics, and nanophotonic detection systems is advancing the future of rapid, ultra-sensitive medical diagnostics and smart analytical technologies. His breakthroughs in waveguide-enhanced and plasmonic sensing platforms contribute directly to early disease detection, next-generation point-of-care solutions, and high-impact industrial applications. Through pioneering research that bridges photonics, biotechnology, and semiconductor engineering, he is shaping globally relevant innovations that strengthen healthcare, scientific progress, and technological advancement.

 

Xiaofang Zhao | Nanotechnology | Best Researcher Award

Assoc. Prof. Dr. Xiaofang Zhao | Nanotechnology | Best Researcher Award

Associate Professor at Beijing University of Technology, China.

Dr. Xiaofang Zhao 🧑‍🔬 is an accomplished associate professor at the School of Mathematics, Statistics, and Mechanics, Beijing University of Technology 🇨🇳. With a Ph.D. in Mechanical Engineering from The University of Hong Kong 🎓, she has dedicated her career to the advancement of functional materials research. Her expertise lies in the multi-scale theoretical and experimental exploration of ferroelectric materials 🔍, focusing on their dielectric, mechanical, and multi-field coupling behaviors. Dr. Zhao’s research bridges materials science and mechanical modeling, integrating techniques such as phase-field and molecular dynamics simulation to unlock the behavior of ferroelectric ceramics and polymers ⚙️📊. Her contributions include several national research projects and peer-reviewed publications 📚. A member of multiple professional societies, Dr. Zhao continues to influence the development of advanced materials for applications ranging from energy harvesting to microelectronics ⚡🧩. She is currently nominated for the Best Researcher Award 🏅.

PROFILE 

SCOPUS 

🔍 Summary of Suitability:

Dr. Xiaofang Zhao is a distinguished associate professor with over a decade of focused research in ferroelectric and functional materials, combining mechanical engineering, materials science, and multi-scale modeling. Her innovative work on dielectric, mechanical, and electromechanical coupling mechanisms of ferroelectric materials has greatly enriched the understanding and application of these materials in energy harvesting, sensors, and flexible electronics. She has successfully led and contributed to multiple national and provincial research projects and published numerous papers in SCI-indexed journals, many of which are highly cited. Her commitment to academic excellence and research innovation places her among the top contributors in her field.

📘 Education & Experience 

  • 🎓 Ph.D. in Mechanical Engineering – The University of Hong Kong (2011)

  • 🧪 Postdoctoral Researcher – Mechanics of Functional Materials, Tsinghua University (2012–2014)

  • 👩‍🏫 Associate Professor – School of Mathematics, Statistics and Mechanics, Beijing University of Technology

  • 🧠 Research Focus – Ferroelectric materials, dielectric behavior, multi-scale modeling

  • 🧾 Publications – Multiple papers in SCI-indexed journals on ferroelectric ceramics and polymers

Professional Development 🚀📖

Ronald Ranguin has demonstrated a consistent trajectory of professional growth in environmental chemistry 🧪🌿. Through his doctoral studies and subsequent engineering and managerial roles, he developed specialized expertise in pollutant degradation and sustainable material development ♻️🔍. His collaborations with interdisciplinary research teams have expanded his technical competencies and research impact globally 🌎📖. Ronald continuously contributes to scientific literature and embraces innovations in nanostructured materials, carbon chemistry, and environmental detoxification 🧫💼. His work not only reflects his academic dedication but also his responsiveness to real-world ecological challenges, particularly in tropical and island environments like the Caribbean 🌴🧠.

Research Focus 🔍🤖

Dr. Xiaofang Zhao’s research centers around the multi-field coupling mechanisms of ferroelectric materials 🌐. Her work primarily explores the mechanical, dielectric, and electromechanical properties of functional materials like ferroelectric ceramics and polymers 🔋🔬. Utilizing multi-scale characterization techniques, she investigates how microstructural features—such as grain boundaries and interfacial polarization—impact phase transition behaviors in PVDF films 📐🧪. By applying advanced modeling methods, including phase-field and molecular dynamics simulations, she uncovers the intrinsic and extrinsic factors that influence dielectric responses ⚛️. Her work aims to enhance energy harvesting efficiency, particularly through innovations in the flexoelectric and electrostrictive behavior of laminated films 🌟. Dr. Zhao’s contributions provide new insights into the design and optimization of materials for medical devices, sensors, and low-power electronics 🩺📱. Her interdisciplinary approach enables targeted improvements in material performance, impacting both theoretical understanding and real-world applications 💼🔧.

Awards and Honors 🏆🎖️

    • 🏆 Best Researcher Award Nominee – International Chemical Scientist Awards

    • 🎖️ National Natural Science Foundation of China – Multiple funded projects (2013–2023)

    • 🏅 Beijing Natural Science Foundation – Funded project on PZT/PVDF systems

    • 🧪 China Postdoctoral Science Foundation – Research on nano-scale multiferroic materials

Publications & Citations 📚

  • 📄 “Phase-field simulation of flexoelectric effect in ferroelectric thin films” · Author: Xiaofang Zhao · Year: 2013 · Cited by: 85+ 📚🔍

  • 📄 “Multiscale modeling of PVDF-based ferroelectric polymers” · Author: Xiaofang Zhao · Year: 2015 · Cited by: 65+ 🧵🔬

  • 📄 “Effect of interface polarization on phase transition in laminated structures” · Author: Xiaofang Zhao · Year: 2017 · Cited by: 48+ 🧱⚡

  • 📄 “Dielectric and mechanical coupling in PZT/PVDF systems” · Author: Xiaofang Zhao · Year: 2018 · Cited by: 39+ ⚙️📈

  • 📄 “Flexoelectric energy harvesting materials and mechanisms” · Author: Xiaofang Zhao · Year: 2019 · Cited by: 70+ ⚡🔋

  • 📄 “Electromechanical properties of ferroelectric composites” · Author: Xiaofang Zhao · Year: 2020 · Cited by: 55+ 🧲📊

  • 📄 “Interfacial polarization in ferroelectric laminated films” · Author: Xiaofang Zhao · Year: 2021 · Cited by: 40+ 🧪🧬

  • 📄 “Phase transition modeling of PVDF under coupled fields” · Author: Xiaofang Zhao · Year: 2022 · Cited by: 30+ 🧯🧠

  • 📄 Nano-scale simulation of functional materials” · Author: Xiaofang Zhao · Year: 2023 · Cited by: 15+ 🧮🧫

🔍 Conclusion:

Dr. Xiaofang Zhao exemplifies the qualities of a Best Researcher Award recipient—originality, productivity, societal impact, and leadership in her domain. Her groundbreaking research, scholarly influence, and successful project leadership underscore her exceptional academic profile. Based on her achievements, she not only meets but exceeds the criteria for this prestigious award. 🏆