Sabyasachi Sarkar | Bioinorganic Chemistry | Best Researcher Award

Prof. Dr. Sabyasachi Sarkar | Bioinorganic Chemistry | Best Researcher Award 

Honorary Distinguished Professor | Ramakrishna Mission Vidyamandira | India

Prof. Dr. Sabyasachi Sarkar is a distinguished chemist whose pioneering work bridges fundamental and applied research, combining enzymatic and nanocarbon innovations to create transformative solutions for science and society. He has led and contributed to advanced research in bioinorganic chemistry, catalysis, and nanomaterial systems, with a focus on enzyme-inspired catalysis, sustainable chemical processes, and nanocarbon-based energy conversion. His interdisciplinary research integrates biochemical principles with material science, resulting in significant advancements in metalloenzyme modeling, biomimetic catalyst development, and functional nanomaterials. Prof. Sarkar’s contributions are further exemplified by multiple groundbreaking patents in drug delivery, ambient energy conversion, and catalytic ammonia synthesis, demonstrating both innovation and real-world applicability. His academic influence extends through the training and mentoring of scientists, fostering collaborations across chemistry, biology, and materials science. Prof. Sarkar has received numerous honors and recognitions for his excellence in research and education, reflecting his role as a global leader in advancing sustainable chemistry. His scholarly impact is evident in his 6,444 citations, 229 documents, and an h-index of 39, underscoring the enduring significance and reach of his work in chemical sciences.

Profiles : Google Scholar | Scopus | ORCID | ResearchGate | LinkedIn

 

Featured Publications

Müller, A., Sarkar, S., Shah, S. Q. N., Bögge, H., Schmidtmann, M., & Sarkar, S., et al. (1999). Archimedean synthesis and magic numbers: “Sizing” giant molybdenum‐oxide‐based molecular spheres of the keplerate type. Angewandte Chemie International Edition, 38(21), 3238–3241. Cited by: 503.

Tripathi, S., Sonkar, S. K., & Sarkar, S. (2011). Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale, 3(3), 1176–1181. Cited by: 358.

Goswami, S., Das, S., Aich, K., Pakhira, B., Panja, S., Mukherjee, S. K., & Sarkar, S. (2013). A chemodosimeter for the ratiometric detection of hydrazine based on return of ESIPT and its application in live-cell imaging. Organic Letters, 15(21), 5412–5415. Cited by: 263.

Das, S. K., Chaudhury, P. K., Biswas, D., & Sarkar, S. (1994). Modeling for the active site of sulfite oxidase: Synthesis, characterization, and reactivity of [MoVIO₂(mnt)₂]²⁻ (mnt²⁻ = 1,2-dicyanoethylenedithiolate). Journal of the American Chemical Society, 116(20), 9061–9070. Cited by: 217.

Tripathi, S., & Sarkar, S. (2015). Influence of water soluble carbon dots on the growth of wheat plant. Applied Nanoscience, 5(5), 609–616. Cited by: 200.

Rudivan Eldik | Bioinorganic Chemistry | Lifetime Achievement Award

 

Prof. Dr. Rudivan Eldik | Bioinorganic Chemistry |Lifetime Achievement Award

Research Professor at FriedrichÁlexander University, Erlangen-Nuremberg in Germany.

Prof. Dr. Rudi van Eldik 🌍 is a distinguished chemist with a career spanning over five decades. Born on August 8, 1945, in Amsterdam 🇳🇱, he has held esteemed positions across South Africa, Germany, Poland, and beyond. With expertise in inorganic and bioinorganic reaction mechanisms ⚗️, he has authored over 1,000 scientific papers 📚 and supervised 85 PhD students 🎓. Prof. van Eldik has been honored with multiple doctorates and prestigious awards, including the Bundesverdienstkreuz 🇩🇪. Currently, he serves as a Research Professor at Nicolaus Copernicus University in Torun, Poland 🇵🇱, continuing his impactful scientific contributions.

Professional Profile
Suitability for the Achievement  Award

Prof. Dr. Rudi van Eldik is a globally respected chemist with over five decades of groundbreaking contributions in Inorganic and Bioinorganic Chemistry ⚗️. His career spans prestigious institutions across South Africa, Germany, Poland, and beyond 🌍, proving his lasting impact on international scientific advancement. His work has not only expanded theoretical understanding but also improved practical applications in reaction mechanisms, catalysis, and kinetics 🔬.

🎓 Education:

  • 🧪 B.Sc. (1966) – Potchefstroom University, South Africa
  • 🧪 M.Sc. (1968) – Potchefstroom University, South Africa
  • 🧪 D.Sc. (1971) – Potchefstroom University, South Africa
  • 🎓 Habilitation (1982) – University of Frankfurt, Germany

💼 Experience:

  • 👨‍🏫 1968–1970 – Lecturer, Potchefstroom University, South Africa
  • 🔬 1971 – Post-Doctoral Fellow, SUNY at Buffalo, USA 🇺🇸
  • 👨‍🏫 1972–1976 – Senior Lecturer, Potchefstroom University, South Africa
  • 🔬 1977 – Post-Doctoral Fellow, University of Frankfurt, Germany 🇩🇪
  • 🔬 1978 – Senior Research Associate, SUNY at Buffalo, USA 🇺🇸
  • 👨‍🏫 1979 – Professor of Chemistry, Potchefstroom University, South Africa
  • 👨‍🔬 1980–1986 – Group Leader, Institute for Physical Chemistry, University of Frankfurt, Germany
  • 👨‍🏫 1987–1994 – Professor of Inorganic Chemistry, University of Witten/Herdecke, Germany
  • 🎖️ 1990–1995 – Honorary Professor, Potchefstroom University, South Africa
  • 🌍 1993–1998 – Visiting Professor, University of Utah, USA
  • 👨‍🏫 1994–2010 – Professor of Inorganic and Analytical Chemistry, University of Erlangen-Nuremberg, Germany
  • 🌏 Various Visiting Professorships:
    • University of Canterbury, New Zealand 🇳🇿
    • Ben Gurion University, Israel 🇮🇱
    • University of Melbourne, Australia 🇦🇺
    • Jagiellonian University, Poland 🇵🇱
    • Sun Yat-Sen University, China 🇨🇳
  • 🏅 2010–Present – Emeritus Professor, University of Erlangen-Nuremberg, Germany
  • 👨‍🏫 2013–2020 – Professor of Inorganic Chemistry, Jagiellonian University, Poland
  • 🔬 2018–2025 – Research Professor of Inorganic Chemistry, Nicolaus Copernicus University, Torun, Poland

 

Professional Development 🚀📖

Prof. Dr. Rudi van Eldik 🌟 has demonstrated outstanding professional development through decades of global academic excellence. Beginning his journey in South Africa 🇿🇦, he advanced his expertise with postdoctoral research in the USA 🇺🇸 and Germany 🇩🇪. His career flourished through prestigious roles as professor, researcher, and group leader 🧪, while serving at top universities worldwide 🌍. Renowned for pioneering work in inorganic and bioinorganic reaction mechanisms ⚗️, he has published over 1,000 papers 📚 and guided 85 PhD students 🎓. His global recognition includes honorary doctorates 🎖️ and awards like the Bundesverdienstkreuz 🇩🇪, reflecting lifelong dedication to chemistry.

Research Focus 🔍🤖

Prof. Dr. Rudi van Eldik 🔬 focuses his research on Inorganic and Bioinorganic Chemistry ⚗️, with a special interest in studying complex reaction mechanisms 🔄. His work explores how metal ions interact in biological and chemical systems 🧠🌿, helping to understand important processes like enzyme functions and catalysis ⚡. He is also an expert in applying high-pressure techniques 💡 to study the thermodynamics and kinetics of chemical reactions 🔥❄️. Through his innovative research, he has made significant contributions to the fields of coordination chemistry, catalysis, and reaction dynamics 🌐, advancing both fundamental science and practical applications 🏆.

🏅 Awards & Honors:
  • 🎖️ 1977 – Alexander von Humboldt Fellow 🇩🇪
  • 🏆 1979 – Raikes Medal, South African Chemical Institute 🇿🇦
  • 🎓 1997 – Honorary Doctor of Science, Potchefstroom University 🇿🇦
  • 🎓 2006 – Honorary Doctor of Science, University of Kragujevac 🇷🇸
  • 🏅 2007 – Honorary Fellow, Royal Society of South Africa 🇿🇦
  • 🥇 2009 – Federal Cross of Merit (Bundesverdienstkreuz), Germany 🇩🇪
  • 🧪 2009 – Inorganic Mechanisms Award, Royal Society of Chemistry, London 🇬🇧
  • 🎓 2010 – Honorary Doctor of Science, Jagiellonian University 🇵🇱
  • 🎓 2010 – Honorary Doctor of Science, University of Pretoria 🇿🇦
  • 🎓 2012 – Honorary Doctor of Science, Ivanovo State University of Chemistry and Technology 🇷🇺
Publication Top Notes:

📄 Transition metal-catalyzed oxidation of sulfur (IV) oxidesC Brandt, R Van Eldik | Cited by: 742 | Year: 1995

📄 The chemistry of metal carbonato and carbon dioxide complexesDA Palmer, R Van Eldik | Cited by: 683 | Year: 1983

📄 Activation and reaction volumes in solution. 3A Drljaca, CD Hubbard, R Van Eldik, T Asano, MV Basilevsky, … | Cited by: 385 | Year: 1998

📄 Characterisation of polymer fractions from waste electrical and electronic equipment (WEEE) and implications for waste managementM Schlummer, L Gruber, A Mäurer, G Wolz, R Van Eldik | Cited by: 305 | Year: 2007

📄 Inorganic high pressure chemistry: kinetics and mechanismsR Van Eldik | Cited by: 248 | Year: 1986

📄 Gutmann donor and acceptor numbers for ionic liquidsM Schmeisser, P Illner, R Puchta, A Zahl, R van Eldik | Cited by: 233 | Year: 2012

📄 Kinetics and mechanism of the iron (III)-catalyzed autoxidation of sulfur (IV) oxides in aqueous solutionC Brandt, I Fabian, R van Eldik | Cited by: 232 | Year: 1994

📄 Chemistry under extreme and non-classical conditionsR van Eldik, CD Hubbard | Cited by: 222 | Year: 1996

📄 Spectrophotometric stopped‐flow apparatus suitable for high‐pressure experiments to 200 MPaR Van Eldik, W Gaede, S Wieland, J Kraft, M Spitzer, DA Palmer | Cited by: 206 | Year: 1993

📄 Kinetics of [FeII(edta)] Oxidation by Molecular Oxygen Revisited. New Evidence for a Multistep MechanismS Seibig, R van Eldik | Cited by: 198 | Year: 1997

📌 Conclusion:

Prof. Dr. Rudi van Eldik’s lifelong dedication, exceptional research output, and global influence make him a perfect candidate for a Lifetime Achievement Award 🌟. His legacy is not only visible in his scientific discoveries but also through the generations of researchers he has mentored and inspired worldwide 🌐.