Ayse Aktas Kamiloglu | Inorganic Chemistry | Best Researcher Award

Assoc. Prof. Dr. Ayse Aktas Kamiloglu | Inorganic Chemistry | Best Researcher Award

Associate Professor | Karadeniz Technical University | Turkey

Assoc. Prof. Dr. Ayse Aktas Kamiloglu is a distinguished inorganic chemist at Karadeniz Technical University, renowned for her contributions to the design and application of phthalocyanine-based materials in catalysis, photochemistry, and medicinal chemistry. Her research focuses on coordination compounds and metal-based functional materials, emphasizing structure–property relationships that drive innovation in inorganic and organometallic systems. She has successfully led several TÜBİTAK- and AÇÜBAP-supported research projects on the synthesis, spectroscopic characterization, and functional evaluation of metallophthalocyanines and Schiff base derivatives with biological and catalytic activities. Her expertise spans coordination chemistry, photophysical and photochemical analysis, electrochemistry, and the development of bioactive organometallic complexes, particularly for enzyme inhibition relevant to neurodegenerative disorders. Dr. Kamiloglu has authored over 30 SCI-indexed publications in reputed journals such as Applied Organometallic Chemistry, Journal of Coordination Chemistry, and Journal of Organometallic Chemistry, contributing valuable insights into metal–ligand interactions and their technological implications. Recognized for her scientific achievements, she has received numerous awards for research excellence and innovation. With 418 citations, 31 publications, and an h-index of 12, she continues to make impactful contributions to the advancement of inorganic and materials chemistry while fostering international collaboration and mentoring future scientists.

Featured Publications

 

Jingyuan Chen | Electrochemistry | Best Researcher Award

Prof. Dr. Jingyuan Chen | Electrochemistry | Best Researcher Award

professor | University of Fukui | Japan

Professor Jingyuan Chen, Ph.D., is a distinguished scholar in electrochemistry whose remarkable career has been shaped by resilience, intellectual curiosity, and a lifelong dedication to advancing both scientific knowledge and education. Born on September 18, 1957, in Xiamen, China, she grew up during a time of profound social and educational change, and in 1977 she became part of the first generation of students to pass the reinstated university entrance examinations following the Cultural Revolution. This milestone opened the door to higher education, and she pursued her undergraduate studies at Tianjin University of Science and Technology, where she earned a bachelor’s degree in Marine Science and Engineering in 1982. Following graduation, she applied her skills in the chemical industry, first as an engineer at Xiamen Electrochemistry Company and later as Chief Director of Research and Technology Development at Nongru Nianhe Chemistry Company, where she gained invaluable practical experience in developing new chemical processes and technologies. Motivated by a desire to deepen her expertise and contribute to fundamental science, she moved to Japan in 1990 to pursue graduate studies at the University of Fukui. There, she completed her master’s degree in Applied Chemistry and Biotechnology in 1993, followed by her Ph.D. in Materials Engineering in 1996 under the mentorship of Professor Koichi Aoki. Her doctoral research, titled Statistical Thermodynamics of Redox Interaction at Polynuclear Transition-Metal Complexes, combined theoretical models with chemical synthesis, electrochemical measurements, and spectroscopic techniques, establishing a strong foundation for her later research into the physics of interfacial phenomena in electrochemistry. After earning her Ph.D., Professor Chen began her professional research career as a senior researcher at MAEDA KOSEN Company Limited from 1996 to 1998, where she bridged the gap between fundamental science and industrial applications. In 1998, she transitioned to academia, joining Kanazawa University as a lecturer, and soon after expanded her international outlook through a visiting scholar appointment in Professor Henry White’s laboratory at the University of Utah from 2000 to 2001. Returning to Japan, she joined the University of Fukui, where she advanced steadily from lecturer to associate professor, and in 2017 she was promoted to full professor of Applied Physics. In recognition of her long-standing contributions, she was named Honorary Professor of the University of Fukui in 2023. Throughout her academic career, Professor Chen has distinguished herself not only through her pioneering research but also through her commitment to education, having supervised thirty-seven Ph.D. students from Japan, China, Thailand, and other countries, many of whom have gone on to make significant contributions of their own. Her research has consistently focused on the fundamentals of electrochemical science, with a particular emphasis on interfacial phenomena, and her work has advanced understanding in areas that connect physical chemistry and materials science. Beyond her laboratory, she has been an active and respected member of numerous professional organizations, including the American Chemical Society, the Royal Society of Chemistry, the International Society of Electrochemistry, and several major Japanese chemical societies, reflecting her integration into the global scientific community. With decades of experience as a researcher, mentor, and international collaborator, Professor Chen continues to be recognized as an influential figure whose career exemplifies the pursuit of fundamental knowledge while fostering scientific exchange across cultures and disciplines.

Profile: Google Scholar | Scopus | ORCID 

Featured Publications

1. Aoki K., Mukoyama I., Chen J., Competition between polymerization and dissolution of poly (3-methylthiophene) films. Russian Journal of Electrochemistry, 2004, 40(3), 280–285.

2. Aoki K.J., Chen J., Liu Y., Jia B., Peak potential shift of fast cyclic voltammograms owing to capacitance of redox reactions. Journal of Electroanalytical Chemistry, 2020, 856, 113609.

3. Hou Y., Aoki K.J., Chen J., Nishiumi T., Solvent variables controlling electric double layer capacitance at the metal–solution interface. The Journal of Physical Chemistry C, 2014, 118(19), 10153–10158.

4. Aoki K., Chen J., Ke Q., Armes S.P., Randall D.P., Redox reactions of polyaniline-coated latex suspensions. Langmuir, 2003, 19(13), 5511–5516.

5. Tasakorn P., Chen J., Aoki K., Voltammetry of a single oil droplet on a large electrode. Journal of Electroanalytical Chemistry, 2002, 533(1–2), 119–126.

6. Aoki K., Tasakorn P., Chen J., Electrode reactions at sub-micron oil | water | electrode interfaces. Journal of Electroanalytical Chemistry, 2003, 542, 51–60.

7. Aoki K.J., Chen J., Zeng X., Wang Z., Decrease in the double layer capacitance by faradaic current. RSC Advances, 2017, 7(36), 22501–22509.

8. Aoki K., Chen J., Statistical thermodynamics of multi-nuclear linear complexes with mixed valence states by means of correlated-walk. Journal of Electroanalytical Chemistry, 1995, 380, 35–45.

9. Hou Y., Aoki K.J., Chen J., Nishiumi T., Invariance of double layer capacitance to polarized potential in halide solutions. Universal Journal of Chemistry, 2013, 1(4), 162–169.

10. Rijiravanich P., Aoki K., Chen J., Surareungchai W., Somasundrum M., Micro-cylinder biosensors for phenol and catechol based on layer-by-layer immobilization of tyrosinase on latex particles: Theory and experiment. Journal of Electroanalytical Chemistry, 2006, 589(2), 249–258.

11. Chen J., Somasundrum M., Steady-state current at oil | water | electrode interfaces using ion-insoluble polydimethylsiloxane droplets. Journal of Electroanalytical Chemistry, 2004, 572, 153–159.

Manuel Ángel González Rodríguez | Electrochemistry| Best Researcher Award

Mr. Manuel Ángel González Rodríguez | Electrochemistry| Best Researcher Award

Estudiante investigador de doctorado at CITES, Spain.

🔬 Short Biography 🌿💊📚

Manuel Ángel González Rodríguez is a dedicated chemical engineer and predoctoral researcher at the University of Huelva, Spain. He holds a Bachelor’s degree in Chemistry and is completing his Master’s in Chemical Engineering, both with outstanding academic performance. Currently pursuing a Ph.D. in Industrial and Environmental Science and Technology, his research focuses on the design and optimization of AEM electrolytic cells for renewable hydrogen production. Manuel has contributed to various research projects in sustainable energy and nanomaterials, including work on biolubricants and hydrogen fuel cell integration for aerospace applications. He combines strong analytical skills with expertise in project management and laboratory methods. Passionate about sustainable innovation, he continues to advance clean energy technologies through academic and industry collaborations.

PROFILE 

ORCID 

🔍 Summary of Suitability:

Manuel Ángel González Rodríguez stands out as a highly promising young researcher in the field of chemical engineering and industrial environmental technologies. With a strong academic foundation—graduating with honors in both his undergraduate degree in Chemistry and his ongoing Master’s program in Chemical Engineering—he has consistently demonstrated academic excellence (GPA: 8.9/10 and 9.3/10 respectively). His research trajectory, particularly in green chemistry and hydrogen energy systems, positions him at the forefront of sustainable innovation in electrochemical technologies.

📘 Education

Manuel Ángel González Rodríguez holds a Bachelor’s Degree in Chemistry from the University of Huelva (2019–2023), graduating with an outstanding GPA of 8.9/10. His undergraduate thesis focused on the extraction of Cr(VI) from atmospheric particulate matter, with a final score of 9.9/10 (Honors). He is currently pursuing a Master’s Degree in Chemical Engineering at the same university (2023–2025), where he maintains a GPA of 9.3/10. His master’s thesis investigates chemical modification processes of vegetable oils using sulfur via various synthesis routes, achieving a 9.4/10. In parallel, Manuel is enrolled in a PhD program in Industrial and Environmental Science and Technology, where his research centers on optimizing the design of AEM electrolytic cells for renewable hydrogen production.

Professional Experience

Manuel has gained substantial practical experience in analytical and applied chemical research. During his undergraduate internship at EUROFINS Químico Onubense S.L.U. (Feb–Apr 2023), he conducted analytical determinations in water and soils using spectrophotometry, electrometry, and volumetric techniques. He further collaborated with the University of Huelva under a Santander-funded project (Jun–Aug 2023) to synthesize silica nanoparticles in cellulosic fibers for biolubricant development.

Skills and Competencies

Manuel demonstrates a solid command of project management, advanced Excel, and analytical laboratory techniques. With a B2 level of English, he effectively communicates in both academic and technical environments. His adaptability is reflected in his ability to tailor strategies to diverse project demands, while his results-driven mindset ensures the achievement of ambitious goals and high-performance standards.

Research Focus 🔍🤖

His current PhD research addresses the development and optimization of AEM (Anion Exchange Membrane) electrolytic cells aimed at sustainable hydrogen generation. This includes innovative cell design, integration of low-cost materials, and process scalability, aligning with global energy transition goals.

Awards and Honors 🏆🎖️

Throughout his academic journey, Manuel has consistently achieved top marks, including Honors in his Bachelor’s Thesis and high distinctions in his Master’s coursework and research, highlighting his commitment to academic excellence and innovation in sustainable chemical engineering.

Publications & Citations 📚

  • Determinación analítica de aguas, suelos agrícolas e industriales mediante técnicas espectrofotométricas, electrometría y volumetría
    González Rodríguez, M. Á. (2023)

  • Fabricación de nanopartículas de sílica en fibras celulósicas para el desarrollo de biolubricantes
    González Rodríguez, M. Á., & UHU Research Team (2023)

  • Diseño, experimentación y optimización de celdas electrolíticas tipo AEM para producción de hidrógeno renovable
    González Rodríguez, M. Á., et al. (2024)

  • Diseño e integración del sistema de pila de hidrógeno en banco de pruebas para plataforma aérea
    González Rodríguez, M. Á. (2025)

  • Optimización del diseño de celdas electrolíticas de tipo AEM para producción de hidrógeno a partir de fuentes renovables (en curso)
    González Rodríguez, M. Á. (desde 2025)

🔍 Conclusion:

Manuel Ángel González Rodríguez is highly suitable for the Best Researcher Award, particularly in the early-career category. His focused research on renewable hydrogen production, coupled with his academic merit, industry collaboration, and strong technical competencies, marks him as a rising star in sustainable electrochemical innovation. With increased dissemination of his work and global engagement, he is poised to become a leading figure in his field.

 

 

xianli song | Electrochemistry | Best Researcher Award

Dr. xianli song | Electrochemistry | Best Researcher Award

Anhui polytechnic university , China.

Dr. Xianli Song 🎓 is a dedicated researcher in applied chemistry, currently serving at Anhui Polytechnic University in China 🏫. With a Ph.D. in Applied Chemistry from the University of Chinese Academy of Sciences 🧪, she focuses on advanced battery materials and electrochemical systems 🔋. Dr. Song has published extensively in high-impact journals and actively contributes to academic conferences 🌍. She brings a wealth of lab expertise and technical skillsets 🧫, making significant strides in materials science and sustainable energy solutions 🌱. Her academic excellence has been recognized with multiple awards 🏅 throughout her career.

PROFILE 

SCOPUS

ORCID 

 

🔍 Summary of Suitability:

Dr. Xianli Song is a promising early-career researcher with a Ph.D. in Applied Chemistry and a growing track record of high-impact scientific contributions 🔬. Her work centers around lithium-ion batteries, solid-state electrolytes, and advanced electrochemical systems—areas that are crucial for clean energy technologies ⚡. Her diverse research experience is evidenced by multiple publications in prestigious international journals such as Advanced Functional Materials, Solid State Ionics, and Electrochimica Acta 📚.

🔹 Education & Experience 

  • 🎓 Ph.D. in Applied Chemistry – University of Chinese Academy of Sciences, Beijing (2017–2021)

  • 🎓 M.E. in Chemistry – University of Xinjiang, Urumqi (2013–2016)

  • 🎓 B.E. in Chemical Engineering and Technology – Taishan Medical College (2008–2012)

  • 👩‍🏫 Teaching & Research – School of Chemical and Environmental Engineering, Anhui Polytechnic University

  • 🧪 Research Experience – Expertise in lithium batteries, solid-state electrolytes, nanofibers, and supercapacitors

Professional Development 🚀📖

Dr. Song continually hones her scientific expertise through active participation in conferences, like presenting a poster at the 8th International Congress on Ionic Liquids (COIL-8) in Beijing 🧑‍🔬. Her development is also shaped by hands-on laboratory practice using advanced instruments like XRD, SEM, TEM 🔬, and electrochemical workstations ⚙️. She is proficient in essential software for scientific analysis and documentation 💻. Fluent in English (CET-6) 🌐, she bridges global scientific discourse effectively. Dr. Song’s commitment to professional growth supports her evolving research in high-performance, sustainable energy storage technologies ⚡.

Research Focus 🔍🤖

Dr. Xianli Song’s research 🔍 primarily centers on energy storage and electrochemical materials, with a particular focus on solid-state lithium metal batteries 🔋. Her work involves developing advanced polymer electrolytes, ionogel-ceramic hybrids, and nanofiber membranes for safer, high-performance batteries 🧫. She also explores materials for supercapacitors and transparent conductive films, contributing to green energy technologies 🌿. Her interdisciplinary approach blends materials science, nanotechnology, and applied chemistry 🧪, making her contributions vital for the next generation of renewable energy storage solutions 🔄. Her studies are published in top-tier journals, underscoring the impact of her work 📚.

Awards and Honors 🏆🎖️

  • 🏅 2020 Merit Student Award – University of Chinese Academy of Sciences

  • 🥇 2016 Excellent Graduate Dissertation – Xinjiang University

  • 🎖 2011 Outstanding Student – Taishan Medical College

Publications & Citations 📚

  • 📄 Construction organic composite gel polymer electrolyte for stable solid-state lithium metal batteriesSolid State Ionics, 2025 📅 | 🔍 Cited by: [citation count needed] 📈

  • 📄 Influence of Si content on infrared and electrical properties of metal-free transparent conductive Si-doped DLC filmDiamond & Related Materials, 2025 📅 | 🔍 Cited by: [citation count needed] 📈

  • 📄 Synergistic coupling in “Ionogel-in-Ceramic” solid electrolyte for lithium batteriesAdvanced Functional Materials, 2021 📅 | 🔍 Cited by: [citation count needed] 📈

  • 📄 Li ion distribution in poly(ionic liquid) electrolyte with LATP nanoparticlesElectrochimica Acta, 2021 📅 | 🔍 Cited by: [citation count needed] 📈

  • 📄 Core@shell nanofiber membrane for lithium-metal batteriesSolid State Ionics, 2020 📅 | 🔍 Cited by: [citation count needed] 📈

  • 📄 Ionic liquids as high-voltage electrolytes for supercapacitorsFrontiers in Chemistry, 2020 📅 | 🔍 Cited by: [citation count needed] 📈

  • 📄 Polyaniline-coal based carbon nanofibers for flexible supercapacitorsElectrochimica Acta, 2016 📅 | 🔍 Cited by: [citation count needed] 📈

  • 📄 CdS on coal-based activated carbon nanofibers with photocatalytic propertyChemical Physics Letters, 2016 📅 | 🔍 Cited by: [citation count needed] 📈

  • 📄 Coal-derived porous carbon fibers for electrodes and absorptionJ. Mater. Chem. A, 2015 📅 | 🔍 Cited by: [citation count needed] 📈

  • 📄 Photochromism of pyrazolone derivatives in solid stateNew J. Chem., 2015 📅 | 🔍 Cited by: [citation count needed] 📈

Conclusion

Dr. Song exemplifies what the Best Researcher Award seeks to recognize: innovative, impactful, and relevant scientific work that advances both academia and real-world applications. Her focus on sustainable energy solutions, publication record, and technical expertise make her a strong and deserving candidate for this prestigious honor. 🏅

 

 

Dr. Aurelien Francis Kamga ngounoue | Electrochemistry | Best Researcher Award

Dr. Aurelien Francis Kamga ngounoue | Electrochemistry | Best Researcher Award

Dr. Aurelien Francis Kamga ngounoue, University of Yaounde, Cameroon

🧪 Dr. Francis Aurelien Ngounoue Kamga is a Cameroonian researcher specializing in organic and inorganic synthetic chemistry, with a focus on coordination chemistry. He earned his Ph.D. in Coordination Chemistry from the University of Yaoundé I in 2022, studying metal complexes with Schiff bases under Professor Peter Teke Ndifon. Dr. Ngounoue Kamga has held prestigious fellowships, including the “Petrache Poenaru” Postdoctoral Scholarship and the “Eugen Ionescu” Doctoral Scholarship at the National University of Science and Technology POLITEHNICA Bucharest. His expertise includes electrochemistry, organometallic chemistry, and computational chemistry, with several high-impact publications.

Professional Profile:

Scopus

Suitability for Best Researcher Award

Dr. Francis Aurelien Ngounoue Kamga is a highly suitable candidate for a Best Researcher Award due to his outstanding contributions to the field of coordination chemistry and his multidisciplinary expertise in electrochemistry, organometallic chemistry, and computational chemistry. His research on metal complexes with Schiff bases and their biological and electrochemical properties demonstrates a strong impact on both fundamental and applied chemistry, making him a compelling contender for the award.

🎓 Education and Experience

  • Ph.D. in Coordination Chemistry (2022) – University of Yaoundé I, Cameroon
  • “Petrache Poenaru” Postdoctoral Scholarship (2023–2024) – POLITEHNICA Bucharest, Romania 🇷🇴
  • “Eugen Ionescu” Doctoral Scholarship (2021–2022) – POLITEHNICA Bucharest, Romania
  • Part-time Lecturer & Laboratory Technician – University of Yaoundé I, Cameroon 🇨🇲
  • Research Assistant – Institute of Medical Research and Medicinal Plants (IMPM)
  • Intern – UCB Cameroon

🚀 Professional Development

Dr. Ngounoue Kamga’s research spans electrochemistry, coordination chemistry, and computational chemistry. He has contributed to the electrochemical and spectroscopic study of metal complexes, presenting his work at major scientific events like the 70th Annual Meeting of the International Society of Electrochemistry and the IEEE 2nd Scientific Research Symposium in Bucharest. His research at the Laboratory of Electrochemical Processes in Organic Solvents under Professor Eleonora-Mihaela Ungureanu advanced understanding of nickel(II) complexes with Schiff bases. Proficient in French and English, he excels in analytical techniques such as IR, NMR, UV-Vis, and XRD and molecular modeling. 🌍🔬

🔎 Research Focus

Dr. Ngounoue Kamga’s research focuses on coordination chemistry and the synthesis and characterization of metal complexes with biological and electrochemical properties. His work on Schiff base complexes with metals like V(IV), Co(II), Ni(II), and Cu(II) explores their structural, spectroscopic, and biological activities. He integrates electrochemical methods with computational chemistry to understand reaction mechanisms and material properties. His research advances applications in catalysis, sensor development, and biological activity. His computational work provides insights into reaction pathways and complex stability. 🔬⚗️💡

🏆 Awards and Honors

  • 🏅 “Petrache Poenaru” Postdoctoral Scholarship – POLITEHNICA Bucharest, Romania (2023–2024)
  • 🏅 “Eugen Ionescu” Doctoral Scholarship – POLITEHNICA Bucharest, Romania (2021–2022)
  • 🎤 Presented at 70th Annual Meeting of the International Society of Electrochemistry (2023)
  • 🎤 Presented at IEEE 2nd Scientific Research Symposium – Bucharest (2023)
  • 🏅 Published in Molecules and U.P.B. Scientific Bulletin – High-impact journals

Publication Top Notes:

1️⃣ Experiments and Calculation on New N,N-bis-Tetrahydroacridines (2024) – Molecules, 29, 4082 📖 🔬
🔗 [DOI: 10.3390/molecules29174082]

2️⃣ Electrochemical and Optical Investigation and DFT Calculation on two Tetrahydroacridines (2024) – U.P.B. Sci. Bull., Series B, Vol 86, Iss 2 🧪💡

3️⃣ Electrochemical Investigation on 1,2,3,4-tetrahydroacridine-9-carboxamide in Different Organic Solvents (2024) – U.P.B. Sci. Bull., Series B, Vol 86, Iss 1 ⚗️📊

4️⃣ Ni(II)-Salophen—Comprehensive Analysis on Electrochemical and Spectral Characterization and Biological Studies (2023) – Molecules, 28, 5464 ⚛️🦠
🔗 [DOI: 10.3390/molecules28145464]

5️⃣ Cobalt (II), Nickel (II) and Copper (II) complexes of Tetradentate Schiff base ligands derived from 4-Nitro-O-phenylenediamine (2022) – Egypt. J. Chem. 65(9), 477-495 ⚙️🔬
🔗 [DOI: 10.21608/EJCHEM.2022.82313.4087]

6️⃣ Synthesis, Characterization and Biological Activities of Binuclear Metal Complexes of 2-Benzoylpyridine and Phenyl(Pyridin-2-yl)Methanediol (2021) – Open J. Inorg. Chem., 11, 20-42 🏗️🧫
🔗 [DOI: 10.4236/ojic.2021.111002]

7️⃣ Antimicrobial and antioxidant studies on some transition metal complexes derived from the Schiff base ligand, 4-hydroxypent-3-en-2-ylideneaminophenol (2015) – Der Pharma Chemica, 7(5), 101-106 🦠🛡️