74 / 100 SEO Score

Dr. xianli song | Electrochemistry | Best Researcher Award

Anhui polytechnic university , China.

Dr. Xianli Song 🎓 is a dedicated researcher in applied chemistry, currently serving at Anhui Polytechnic University in China 🏫. With a Ph.D. in Applied Chemistry from the University of Chinese Academy of Sciences 🧪, she focuses on advanced battery materials and electrochemical systems 🔋. Dr. Song has published extensively in high-impact journals and actively contributes to academic conferences 🌍. She brings a wealth of lab expertise and technical skillsets 🧫, making significant strides in materials science and sustainable energy solutions 🌱. Her academic excellence has been recognized with multiple awards 🏅 throughout her career.

PROFILE 

SCOPUS

ORCID 

 

🔍 Summary of Suitability:

Dr. Xianli Song is a promising early-career researcher with a Ph.D. in Applied Chemistry and a growing track record of high-impact scientific contributions 🔬. Her work centers around lithium-ion batteries, solid-state electrolytes, and advanced electrochemical systems—areas that are crucial for clean energy technologies ⚡. Her diverse research experience is evidenced by multiple publications in prestigious international journals such as Advanced Functional Materials, Solid State Ionics, and Electrochimica Acta 📚.

🔹 Education & Experience 

  • 🎓 Ph.D. in Applied Chemistry – University of Chinese Academy of Sciences, Beijing (2017–2021)

  • 🎓 M.E. in Chemistry – University of Xinjiang, Urumqi (2013–2016)

  • 🎓 B.E. in Chemical Engineering and Technology – Taishan Medical College (2008–2012)

  • 👩‍🏫 Teaching & Research – School of Chemical and Environmental Engineering, Anhui Polytechnic University

  • 🧪 Research Experience – Expertise in lithium batteries, solid-state electrolytes, nanofibers, and supercapacitors

Professional Development 🚀📖

Dr. Song continually hones her scientific expertise through active participation in conferences, like presenting a poster at the 8th International Congress on Ionic Liquids (COIL-8) in Beijing 🧑‍🔬. Her development is also shaped by hands-on laboratory practice using advanced instruments like XRD, SEM, TEM 🔬, and electrochemical workstations ⚙️. She is proficient in essential software for scientific analysis and documentation 💻. Fluent in English (CET-6) 🌐, she bridges global scientific discourse effectively. Dr. Song’s commitment to professional growth supports her evolving research in high-performance, sustainable energy storage technologies ⚡.

Research Focus 🔍🤖

Dr. Xianli Song’s research 🔍 primarily centers on energy storage and electrochemical materials, with a particular focus on solid-state lithium metal batteries 🔋. Her work involves developing advanced polymer electrolytes, ionogel-ceramic hybrids, and nanofiber membranes for safer, high-performance batteries 🧫. She also explores materials for supercapacitors and transparent conductive films, contributing to green energy technologies 🌿. Her interdisciplinary approach blends materials science, nanotechnology, and applied chemistry 🧪, making her contributions vital for the next generation of renewable energy storage solutions 🔄. Her studies are published in top-tier journals, underscoring the impact of her work 📚.

Awards and Honors 🏆🎖️

  • 🏅 2020 Merit Student Award – University of Chinese Academy of Sciences

  • 🥇 2016 Excellent Graduate Dissertation – Xinjiang University

  • 🎖 2011 Outstanding Student – Taishan Medical College

Publications & Citations 📚

  • 📄 Construction organic composite gel polymer electrolyte for stable solid-state lithium metal batteriesSolid State Ionics, 2025 📅 | 🔍 Cited by: [citation count needed] 📈

  • 📄 Influence of Si content on infrared and electrical properties of metal-free transparent conductive Si-doped DLC filmDiamond & Related Materials, 2025 📅 | 🔍 Cited by: [citation count needed] 📈

  • 📄 Synergistic coupling in “Ionogel-in-Ceramic” solid electrolyte for lithium batteriesAdvanced Functional Materials, 2021 📅 | 🔍 Cited by: [citation count needed] 📈

  • 📄 Li ion distribution in poly(ionic liquid) electrolyte with LATP nanoparticlesElectrochimica Acta, 2021 📅 | 🔍 Cited by: [citation count needed] 📈

  • 📄 Core@shell nanofiber membrane for lithium-metal batteriesSolid State Ionics, 2020 📅 | 🔍 Cited by: [citation count needed] 📈

  • 📄 Ionic liquids as high-voltage electrolytes for supercapacitorsFrontiers in Chemistry, 2020 📅 | 🔍 Cited by: [citation count needed] 📈

  • 📄 Polyaniline-coal based carbon nanofibers for flexible supercapacitorsElectrochimica Acta, 2016 📅 | 🔍 Cited by: [citation count needed] 📈

  • 📄 CdS on coal-based activated carbon nanofibers with photocatalytic propertyChemical Physics Letters, 2016 📅 | 🔍 Cited by: [citation count needed] 📈

  • 📄 Coal-derived porous carbon fibers for electrodes and absorptionJ. Mater. Chem. A, 2015 📅 | 🔍 Cited by: [citation count needed] 📈

  • 📄 Photochromism of pyrazolone derivatives in solid stateNew J. Chem., 2015 📅 | 🔍 Cited by: [citation count needed] 📈

Conclusion

Dr. Song exemplifies what the Best Researcher Award seeks to recognize: innovative, impactful, and relevant scientific work that advances both academia and real-world applications. Her focus on sustainable energy solutions, publication record, and technical expertise make her a strong and deserving candidate for this prestigious honor. 🏅

 

 

xianli song | Electrochemistry | Best Researcher Award

You May Also Like