Hassan Namazi | Polymer Chemistry | Best Paper Award

Prof. Hassan Namazi | Polymer Chemistry | Best Paper Award 

University of Tabriz | Iran

Professor Hassan Namazi is a leading scientist and academic renowned for his pioneering work in polymer chemistry, nanobiopolymers, and advanced drug delivery systems. His research focuses on the design, synthesis, and characterization of dendrimers, metal–organic frameworks (MOFs), and stimuli-responsive biopolymer nanocomposites for applications in cancer therapy, targeted drug delivery, and water remediation. With extensive experience in polymer synthesis, nanocomposite fabrication, spectroscopy, materials characterization, and computational modeling, he has developed innovative platforms for controlled and co-delivery of therapeutic agents, emphasizing biocompatibility, efficiency, and environmental sustainability. His contributions span fundamental research and practical applications, including photoluminescent polymers, glycodendrimers, and hybrid nanomaterials, establishing him as a key figure in advancing multifunctional biomaterials and nanotechnology-driven solutions. Prof. Namazi’s dedication to scientific excellence is reflected in his mentorship of emerging researchers, collaboration with interdisciplinary teams, and prolific publication record, demonstrating a consistent impact on both academic and applied chemical sciences. His work has earned national and international recognition, showcasing his leadership in developing eco-friendly polymers, functional nanocarriers, and stimuli-responsive drug delivery systems that address pressing biomedical and environmental challenges. Professor Namazi’s growing academic impact is evidenced by 10,627 citations, 211 documents, and an h-index of 63, reflecting his outstanding influence and leadership in the global materials science community.

Profiles : 
Google scholar | Scopus | ORCID | ResearchGate | LinkedIn

Featured Publications

Pooresmaeil, M., & Namazi, H. (2026). Iron oxide nanoparticles/polymer nanocomposite hydrogels. In Hydrogels for Wound Healing (pp. 327–363).

Karimi, S., & Namazi, H. (2025). Chitosan/dialdehyde starch coating onto l-tyrosine and curcumin intercalated layered double hydroxide for improved the therapeutic effects of breast cancer. International Journal of Biological Macromolecules, 147274.

Rasoulzadehzali, M., Namazi, H., Larsen, K. L., Mahoutforoush, A., … (2025). Engineering pH-sensitive CA/GO nanocomposite beads for dual-drug oral delivery: Improved therapeutic efficacy against breast cancer cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 138081.

Jafari, H., & Namazi, H. (2025). κ-carrageenan coated magnetic hydroxypropyl methylcellulose/chitosan nanoparticles as a pH-sensitive nanocarrier for efficient methotrexate release. International Journal of Biological Macromolecules, 146750. Cited by 1

Karimi, S., & Namazi, H. (2025). Doxorubicin-curcumin-co loaded layered double hydroxide coated with dialdehyde lactose/ZnO via Schiff-base bonding for simultaneous and targeted delivery of drugs to …. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 715, 136628. Cited by 5

Mariachiara Spennato | Polymer Chemistry | Women Researcher Award

Dr. Mariachiara Spennato | Polymer Chemistry | Women Researcher Award

Post-doc research fellow| University of Bologna | Italy

Dr. Mariachiara Spennato is an accomplished chemist specializing in sustainable materials and biocatalysis. She earned her PhD in Chemistry from the University of Trieste, where her doctoral research focused on the sustainable valorization of biomass using chemo-enzymatic approaches. Currently, she is a postdoctoral researcher at the University of Bologna, contributing to the H2020 PRESERVE project, which addresses enzymatic recycling and the development of advanced bio-based polymers. Her career reflects a strong commitment to green chemistry, biotechnology, and polymer science, with a clear emphasis on advancing circular bioeconomy solutions. Dr. Spennato has gained international exposure through her Short-Term Scientific Mission under the COST Action, where she applied computational approaches to enzyme characterization. She has authored peer-reviewed publications, engaged in interdisciplinary collaborations, and worked closely with industrial partners. With expertise spanning enzyme immobilization, polymer development, and plastic upcycling, she stands out as a promising young scientist dedicated to sustainable chemical innovation.

Professional Profiles

Dr. Spennato pursued her higher education in Chemistry with dedication and excellence. She completed her PhD in Chemistry at the University of Trieste, where she carried out innovative research on biomass valorization through chemo-enzymatic methods. Her doctoral studies provided her with a strong foundation in biocatalysis, enzyme immobilization, and the application of sustainable technologies in material science. During this period, she focused on integrating biotechnology and chemistry to develop processes that could reduce environmental impact while creating functional, renewable materials. Her training also included exposure to advanced analytical techniques and computational methods, preparing her to tackle complex scientific challenges. The interdisciplinary nature of her PhD research not only enhanced her technical expertise but also strengthened her ability to collaborate across fields such as polymer chemistry, enzymology, and bioengineering. This academic journey laid the groundwork for her current role in cutting-edge European projects centered on sustainable polymers and enzymatic recycling.

Experience 

Dr. Spennato’s professional experience reflects her strong engagement with both academic and applied research. She currently serves as a postdoctoral researcher at the University of Bologna, where she contributes to the H2020 PRESERVE project, focusing on enzymatic recycling and bio-based polymer development. Her prior experience includes participation in several European and national projects such as PRIN CARDIGAN, PRIME, and INTERFACE, which broadened her expertise in biocatalysis and functional material design. Through a COST-funded Short-Term Scientific Mission, she gained valuable international exposure, working on computational enzyme characterization in a collaborative setting. Across these roles, Dr. Spennato has actively published in peer-reviewed journals, fostered collaborations with industry, and applied her skills to practical sustainability challenges. Her experience demonstrates versatility, spanning laboratory-based enzymatic studies, polymer innovation, and computational analysis. She has consistently aligned her work with the principles of green chemistry, advancing solutions for recycling, upcycling, and sustainable material development in line with global needs.

Professional Development

Dr. Spennato has consistently advanced her professional development through active participation in international research collaborations, European projects, and interdisciplinary studies. As part of the H2020 PRESERVE initiative, she works alongside a diverse network of scientists and industrial partners, enhancing her understanding of large-scale, application-oriented research. Her involvement in the COST Action STSM further expanded her competencies in computational enzyme studies, enriching her experimental expertise with modeling approaches. By engaging with projects such as PRIN CARDIGAN, INTERFACE, and PRIME, she has diversified her research scope, moving from biomass valorization and enzyme immobilization to sustainable polymers and circular bioeconomy applications. She continues to strengthen her profile by contributing to publications, attending scientific meetings, and fostering collaborations across institutions like Politehnica University of Timișoara. This ongoing professional development illustrates her commitment to remaining at the forefront of sustainable chemistry, bridging academic research with industrial innovation, and building leadership capacity for future contributions.

Skills & Expertise

Dr. Spennato possesses a multidisciplinary skill set that spans chemistry, biotechnology, and material science. Her expertise lies in biocatalysis, particularly enzyme immobilization for biomass valorization and enzymatic recycling processes. She has developed proficiency in designing bio-based and biodegradable polymers, applying innovative approaches to plastic upcycling and circular bioeconomy solutions. Her research also incorporates supercritical extraction of bioactive compounds and the development of functional materials from renewable resources. Beyond experimental expertise, she has gained skills in computational enzyme characterization, broadening her ability to integrate theoretical and applied approaches. She is adept in handling advanced laboratory techniques, project-based collaborations, and interdisciplinary communication, enabling her to work effectively across academic and industrial environments. Additionally, her experience with European-funded projects has strengthened her project management, grant-writing, and teamwork capabilities. Together, these competencies highlight her as a versatile scientist who can address sustainability challenges through innovation, collaboration, and technical excellence in chemical sciences.

Resarch Focus

Dr. Spennato’s research focus centers on sustainable chemistry, with an emphasis on biocatalysis, polymer science, and circular bioeconomy. She investigates enzymatic processes for biomass valorization, exploring how immobilized enzymes on renewable supports can enhance efficiency and sustainability. A key area of her work is the design and development of bio-based and biodegradable polymers with advanced functionalities, suitable for replacing conventional plastics. Her contributions also include studies on enzymatic recycling and upcycling of synthetic polymers, offering solutions to global plastic waste challenges. Integrating biotechnology with material science, she develops functional materials from renewable resources while applying innovative extraction methods to recover bioactive compounds. She also utilizes computational enzyme characterization to complement her experimental research, enabling a deeper understanding of enzyme mechanisms. Overall, her focus lies in creating environmentally friendly processes and materials that align with the principles of green chemistry, promoting innovation in sustainable materials and polymer circularity.

Awards & Recognitions

Dr. Spennato has been recognized for her scientific achievements through nominations and active participation in prestigious award platforms. Most notably, she has been nominated for the International Chemical Scientist Awards under the category of Women Researchers, which highlights her contributions to sustainability, innovation, and advanced polymer research. Her achievements within European research frameworks, including participation in Horizon 2020 projects like PRESERVE and INTERFACE, as well as national projects such as PRIN CARDIGAN, further underscore her recognition within the scientific community. Her involvement in COST-funded missions also reflects her ability to secure competitive opportunities that advance both her research and professional profile. While still in the early stages of her career, her growing citation record, collaborative publications, and contributions to the field of biocatalysis and polymer sustainability position her as a rising scientist. These recognitions affirm her potential to shape the future of sustainable chemistry through impactful research and innovation.

Publication Top Notes

Dr. Mariachiara Spennato embodies the qualities of an emerging scientific leader and is an excellent candidate for the Women Researcher Award. Her research directly addresses pressing global issues such as plastic waste, bio-based materials, and sustainable processes. With her strong track record of interdisciplinary collaborations and impactful projects, she demonstrates both scientific merit and future leadership potential. Strengthening her international visibility, expanding her citation impact, and taking on leadership roles will further enhance her profile. Overall, she is a deserving nominee whose work reflects the award’s vision of recognizing outstanding women researchers driving innovation and sustainability in chemistry.

Hong Seung Mo | Polymer chemistry | Best Researcher Award

Dr. Hong Seung Mo | Polymer chemistry | Best Researcher Award

SHINA T&C,  R&D center, South Korea

Dr. Seung-Mo Hong is a highly experienced and innovative R&D professional in the field of polymer engineering, with a dynamic career spanning over two decades. Based in Incheon, South Korea, he holds a Ph.D. in Polymer Engineering from Dankook University, where he explored multifunctional thiol hardeners and their thiol-epoxy curing behavior. He also earned his M.S. and B.S. in Chemical Engineering from Soongsil University. Throughout his distinguished career, Dr. Hong has led groundbreaking research and product development in UV-curable polymers, optical materials, and quantum dot technologies. He has worked with leading organizations like Shin-A T&C, SKC Co., Ltd., and Dongwoo Fine-Chem, spearheading innovations in display materials and adhesives. With over 108 patents and impactful publications, Dr. Hong continues to contribute to advanced material science. His expertise in synthesis, commercialization, and product innovation makes him a driving force in next-generation polymer technologies.

Professional Profile

Education 

Dr. Seung-Mo Hong earned his Ph.D. in Polymer Engineering from Dankook University (2021–2023), where he focused on multifunctional thiol hardeners and thiol-epoxy curing behaviors, graduating with a GPA of 4.37/4.50. Prior to this, he completed his M.S. in Chemical Engineering at Soongsil University (1999–2001) with a thesis on photosensitive polyimides and a GPA of 3.63/4.00. His foundational education was in Chemical Engineering, also at Soongsil University, where he completed his B.S. between 1995 and 1999. Throughout his academic journey, Dr. Hong developed a strong foundation in polymer chemistry, synthesis techniques, and structure-property relationships. His advanced studies focused on both industrial and functional polymers, aligning academic research with practical applications in optical materials and coatings. The rigor and depth of his academic training have equipped him to lead innovation across various industrial R&D platforms and contribute extensively to peer-reviewed scientific literature.

Experience 

Dr. Hong has amassed over 20 years of experience across top-tier R&D institutions and companies. Since 2018, he has led R&D at Shin-A T&C, spearheading innovations in polythiol synthesis, UV inks, and quantum dot optical films. At SKC (2015–2018), he developed multifunctional thiols and high-refractive-index resins for optical lenses. Earlier, he held a pivotal role at Dongwoo Fine-Chem (2006–2015), leading the development of hard coatings, flexible films for OLED, and photosensitive oligomers. His international experience includes a research assignment at Sumitomo Chemical in Japan, where he focused on anti-static and anti-fouling coatings. Beginning his career at SSCP (AkzoNobel) and LG Electronics, Dr. Hong specialized in urethane acrylates and BLU prism sheets. His career reflects deep expertise in polymer synthesis, process scale-up, and product commercialization across diverse applications such as displays, adhesives, and coatings, making him a versatile and strategic leader in the field of advanced materials.

Professional Development

Dr. Seung-Mo Hong has consistently pursued professional development through diverse leadership and technical roles across Korea and Japan. His strengths lie in R&D management, commercialization of high-tech polymer systems, and intellectual property strategy. He is proficient in reverse engineering, defect analysis, VOC resolution, and patent mapping. He has mentored numerous junior researchers and managed large-scale research projects. Notably, his work at Shin-A T&C and SKC led to market-ready innovations in quantum dot resins and multifunctional thiols. Dr. Hong is also fluent in Korean, business-level Japanese, and conversational English, enhancing his collaborative capabilities in multinational settings. He is skilled in using Minitab for statistical analysis and is Six Sigma Green Belt certified. His contributions to the polymer industry are reinforced by 108+ patents and multiple international publications, reflecting his commitment to ongoing innovation and excellence in advanced materials science.

Skills & Expertise

Dr. Seung-Mo Hong possesses a comprehensive skill set centered on advanced polymer science and industrial application. His core competencies include the synthesis and design of UV-curable oligomers and monomers, sulfur-containing compounds, thermoset polymers, and photosensitive materials. He is highly proficient in process development, including commercialization strategies, scale-up procedures, and optimization of production techniques for optical resins and films. Dr. Hong’s material application expertise spans a wide range of products, such as optical films for displays, high-refractive-index lenses, hard coatings, adhesives, and quantum dot-based materials. His analytical capabilities enable him to reverse engineer competitor products, resolve customer complaints, and conduct root cause analysis. Additionally, he is skilled in patent mapping, clearance, and intellectual property risk mitigation. As a seasoned R&D leader, he has mentored junior researchers and led multidisciplinary teams. He is fluent in Korean, professionally proficient in Japanese, and conversational in English, and he is adept at using Minitab and Microsoft Office tools.

Resarch Focus

Dr. Seung-Mo Hong’s research focuses on polymer synthesis, especially UV-curable oligomers and monomers, sulfur-based functional materials, and optical polymers for high-performance applications. His work delves into the development of thiol-based curing systems, high-refractive-index resins, and photosensitive materials for displays and electronics. He has pioneered methods for synthesizing polythiols, epoxy acrylates, and quantum dot UV inks, which have significantly impacted the optical film and display industries. His industrial research encompasses materials for hard coatings, adhesives, lens materials, and flexible electronics, bridging academic precision with commercial applicability. Hong’s approach includes novel chemical formulations, reaction optimization, and product durability improvements. He aligns his research with market trends in displays, wearables, and energy-efficient materials. Through an interdisciplinary lens, Dr. Hong advances polymer technology that underpins next-generation electronic and photonic devices.

Awards & Recognitions

Dr. Seung-Mo Hong’s exceptional contributions to polymer chemistry and industrial innovation have been widely recognized. He received the prestigious Invention King Award from SKC in both 2017 and 2018, honoring his groundbreaking developments in multifunctional thiols and optical materials. While at Dongwoo Fine-Chem, he was honored with the Most Patent Applications Award in 2011, highlighting his prolific output in material innovations, followed by the Excellent Employee Award in 2009. These accolades reflect his ability to transform scientific ideas into commercial products and his dedication to research excellence. In addition to these recognitions, Dr. Hong holds over 100 registered domestic patents and several international patents, demonstrating his continuous impact on the global materials science community. His Six Sigma Green Belt certification further attests to his proficiency in process optimization and quality control, solidifying his reputation as a visionary and highly effective research leader in advanced polymer materials.

Publication Top Notes 

Title: Optimization of synthetic parameters of high purity trifunctional mercaptoesters and their curing behavior for the thiol–epoxy click reaction
Authors: Seung-Mo Hong, Oh Hwan Kim, Seung Hwan Hwang
Year: 2021
Citations: 8+

Title: Synthesis and Characterization of Multifunctional Secondary Thiol Hardeners Using 3‑Mercaptobutanoic Acid and Their Thiol−Epoxy Curing Behavior
Authors: Seung-Mo Hong, Seung Hwan Hwang
Year: 2022
Citations: 10+

Title: Enhancing the shelf life of epoxy monoacrylate resins using acryl phosphate as a reactive additive
Authors: Seung-Mo Hong, Oh Hwan Kim, Seung Hwan Hwang
Year: 2022
Citations: 6+

Title: Synthesis and characteristics of novel 2-hydroxy-3-mercaptopropyl terminated polyoxypropylene glyceryl ether as an epoxy hardener of epoxy-based adhesives
Authors: Seung-Mo Hong, Seung Hwan Hwang
Year: 2022
Citations: 4+

Title: Chemistry of Polythiols and Their Industrial Applications
Authors: Seung-Mo Hong, Oh Hwan Kim, Seung Hwan Hwang
Year: 2024
Citations: 1+

Title: Synthesis of 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene di(mercaptopropionate) for high-luminance and refractive prism sheets
Authors: Seung-Mo Hong, Oh Hwan Kim, Seung Hwan Hwang
Year: 2024
Citations: 0 (new)

Title: Synthesis and Characterization of UV-Curable Resin with High Refractive Index for a Luminance-Enhancing Prism Film
Authors: J.H. Song, Seung-Mo Hong, S.K. Park, H.K. Kwon, S.H. Hwang, J.M. Oh, S.M. Koo, G.W. Lee, C.H. Park
Year: 2025
Citations: 0 (new)

Title: Synthesis and characterization of hyperbranched thiol hardener and their curing behavior in thiol–epoxy
Authors: J.H. Song, Seung-Mo Hong, S.K. Park, H.K. Kwon, S.H. Hwang, J.M. Oh, S.M. Koo, G.W. Lee, C.H. Park
Year: 2025
Citations: 0 (new)

Conclusion:

Dr. Hong’s career demonstrates a consistent trajectory of innovation, problem-solving, and technology development in polymer and materials engineering. His cutting-edge research, industrial application success, and outstanding patent portfolio make him a compelling and deserving recipient of the Best Researcher Award. His work not only advances scientific understanding but also significantly contributes to the commercialization of high-performance materials, impacting industries such as display technology, electronics, and optical coatings.

Rachid AZIAM | Polymer Chemistry | Best Researcher Award

Dr.Rachid AZIAM | Polymer Chemistry | Best Researcher Award

Academician/Research Scholar , Ibnou Zohr University in  Morocco.

🔬 Short Biography 🌿💊📚

Dr. Rachid Aziam 🇲🇦 is a Moroccan researcher specializing in physical chemistry and environmental applications. 🎓 He holds a Ph.D. in Physical Chemistry (2021) from the Faculty of Sciences, Ibn Zohr University, Agadir. Prior to that, he earned two Master’s degrees — one in Water Chemistry (Oujda, Morocco) and another in Water Treatment, Science and Technology (Lille, France) — along with a Bachelor’s in Chemistry and a DEUG diploma. 🌍 His teaching career includes appointments at the Faculty of Sciences in Agadir and the Specialized Institute of Public Works. Dr. Aziam has undertaken multiple prestigious research internships across Morocco, France, and Romania. 🧪 His work focuses on the synthesis and characterization of eco-friendly biomaterials for environmental remediation. As a published author in Q1-ranked journals, book chapters, and international books, he is recognized for his innovation in green chemistry. 🌿 He is also an active reviewer for international scientific journals and conferences. 🏅

PROFILE 

GOOGLE SCHOLAR

Scopus 

Orcid 

🔍 Summary of Suitability:

Dr. Rachid Aziam is an accomplished researcher in the field of Physical Chemistry with a dedicated focus on environmental remediation and sustainable material science 🌿. Holding a Ph.D. from Ibn Zohr University, he has consistently demonstrated academic rigor, international collaboration, and impactful scientific contributions. His research spans the development of bio-nanocomposites, adsorption of dyes and pollutants, and AI-enhanced modeling techniques for wastewater treatment. His scholarly output includes over 20 peer-reviewed journal articles, many published in Q1 journals, along with international book chapters and a scientific book. With citations exceeding 400+, his work is widely recognized and respected in the scientific community 📚.

🔹 Education & Experience 

Dr. Rachid Aziam’s academic journey began with a DEUG in Chemistry (2010-2011) and culminated in a Ph.D. in Physical Chemistry (2015-2021) from Ibn Zohr University, Agadir 📘. He obtained a Bachelor’s in Chemistry (2011-2012) and two Master’s degrees — one in Water Chemistry from Oujda (2012-2014) and another in Water Treatment from Lille, France (2013-2014) 🌍. His professional experience includes teaching assignments as a Temporary Associate Professor at the Faculty of Sciences in Agadir (2016-2017) and at the Specialized Institute of Public Works (2024-2025), covering subjects like chemical kinetics, thermodynamics, and water treatment 🧪. His extensive practical teaching and laboratory involvement, including plant visits, demonstrate his strong commitment to both theoretical and applied chemistry 👨‍🏫. He has participated in various internships in Morocco, Romania, and France, focusing on wastewater treatment and the development of novel bio-nanocomposites for environmental applications 🌱.

🔹 Professional Development 

Dr. Rachid Aziam has advanced his professional expertise through rigorous research internships and collaborative international projects 🌍. He conducted postdoctoral research at the National University of Science and Technology Politehnica Bucharest (2023, 2025) under Professor Daniela Simina Stefan, working on eco-engineered biopolymer–clay composites using statistical and AI modeling 🤖. His Ph.D. research at Ibn Zohr University emphasized the valorization of local natural materials for dye adsorption from wastewater 💧. Additionally, he interned at industry-relevant institutions like SOTRALENG SARL and the Solid Waste Treatment Center in Oujda, Morocco 🏭. He actively contributes as a reviewer and scientific committee member for international journals and conferences, including CIDEEV 2024 📑. As an author of several high-impact journal articles and co-author of an academic book, Dr. Aziam’s professional trajectory demonstrates continuous engagement in applied environmental research and academia 📘, establishing him as a rising expert in sustainable material innovation and water purification 🌿.

🏅 Awards and Recognitions

  • 🧪 Certificate of Reviewing – Journal of Saudi Chemical Society

  • 🏅 Certificate of Excellence in Reviewing – Asian Journal of Research in Animal and Veterinary Sciences

  • 🥇 Certificate of Excellence in Reviewing – International Research Journal of Pure and Applied Chemistry

  • 🧠 Certificate of Excellence in Peer-Reviewing – Research and Applications Towards Mathematics and Computer Science

  • 🌍 Scientific Committee Member – International Conference on Water Depollution and Green Energy (CIDEEV2024)

🔬 Research Focus

Dr. Rachid Aziam’s research primarily falls within the realm of Environmental Physical Chemistry and Sustainable Materials Science 🧪🌍. His work explores the synthesis and application of eco-friendly bio-nanocomposites — particularly those derived from natural polymers and clays — for the adsorption and removal of pollutants such as azo dyes, phosphate ions, nitrates, and heavy metals from wastewater 💧. With a strong foundation in adsorption kinetics, isotherms, thermodynamic studies, and fixed-bed systems, his contributions aim to solve real-world environmental challenges using low-cost, renewable resources 🌱. He frequently applies modeling techniques, including Artificial Intelligence (AI) and Response Surface Methodology (RSM), to optimize the efficiency of novel adsorbents 🤖📊. His interdisciplinary approach merges chemistry, environmental engineering, and nanotechnology, positioning him at the forefront of green chemistry innovation 🌿. His research significantly impacts wastewater treatment technologies and environmental sustainability goals ♻️.

Publications & Citations 📚

📘 Synthesis, characterization, and comparative study of MgAl-LDHs…Environmental Science and Pollution Research (2020) – Cited by: 102 📈
📗 Kinetic modeling… on Carpobrotus edulis plantEuropean Physical Journal Special Topics (2017) – Cited by: 42 🔬
📙 Adsorption of Crystal Violet onto Carpobrotus edulisMaterials Today: Proceedings (2021) – Cited by: 31 💧
📕 Synthesis of LDH/Alginate composite beads…Chemical Papers (2023) – Cited by: 27 🧪
📒 Factors controlling the adsorption of acid blue 113…Arabian Journal of Geosciences (2016) – Cited by: 26 🌿
📘 Adsorption of metal ions on alginate-clay bio-nanocompositeNanomaterials (2024) – Cited by: 19 🧲
📗 Increasing Methylene Blue Adsorption Efficiency…Chemistry Africa (2021) – Cited by: 19 🧼
📙 Crystal violet dye adsorption on macroalgae…Bioresource Technology (2024) – Cited by: 18 🪸
📕 Macroalgal biomass for removal of organic dyes…Springer Book Chapter (2021) – Cited by: 12 📖
📒 Acid blue 113 removal by corallina officinalis algaE3S Web of Conferences (2021) – Cited by: 12 🧃
📘 Hybrid clay@Fe3O4 for acid blue113 sequestrationInt. J. of Environmental Sci. and Tech. (2024) – Cited by: 10 🧱
📗 Alginate–Moroccan Clay bio-nanocomposite for ion removalPolymers (2023) – Cited by: 8 🧫

🔍 Conclusion:

In conclusion, Dr. Rachid Aziam’s interdisciplinary expertise, proven research excellence, and impactful contributions to environmental chemistry and nanomaterials make him an ideal candidate for the Best Researcher Award 🥇. His work aligns perfectly with global sustainability goals, and his innovations have real-world applicability, positioning him as a leading figure in his domain 🌍.

Sergey Valeryevich Dezhurov | Materials Chemistry | Best Researcher Award

Dr.Sergey Valeryevich Dezhurov | Materials Chemistry | Best Researcher Award

Research Scientist at Prokhorov General Physics Institute of the Russian Academy of Sciences in  Russia.

🔬 Short Biography 🌿💊📚

👨‍🔬 Сергей Валерьевич Дежуров is a seasoned Russian chemist . With over 20 years of experience in the field of chemistry and nanotechnology 🧪, he has contributed significantly to scientific innovation. A graduate of Novosibirsk State University, Faculty of Natural Sciences (1996–2001), he specialized in chemistry and later pursued postgraduate studies in bioorganic chemistry 📘. His professional journey spans roles as a chemistry teacher, synthetic chemist, sales and technical manager, and senior research scientist. Currently affiliated with the Institute of General Physics (IOF RAS) and the Research Institute of Applied Acoustics (NIIPA), he focuses on luminescent materials, quantum dots, bioconjugates, and thin-film technologies 🔬. Sergey is the author of 20+ scientific publications and 4 patents, with deep involvement in international and Russian R&D projects. He is passionate about applying scientific knowledge to create real-world solutions, especially in advanced optics and sensor systems 🌍.

PROFILE 

SCOPUS 

🔍 Summary of Suitability:

Sergey V. Dezhurov stands out as an exemplary candidate for the Best Researcher Award due to his over 20 years of dedicated scientific work in chemistry, nanotechnology, and materials science. His deep expertise in quantum dots, polymer composites, bioorganic chemistry, and optical materials has yielded breakthrough innovations with real-world impact. His experience spans both academic and industrial domains, showcasing versatility, technical depth, and strong leadership in high-tech R&D environments.

🔹 Education & Experience 

🎓 Sergey Dежуров completed his undergraduate studies in chemistry at Novosibirsk State University (1996–2001) and advanced his knowledge through postgraduate studies in bioorganic chemistry and management courses 📚. His career began in education and laboratory roles before progressing into industrial research. Between 2003–2005, he worked at the Institute of Chemical Biology and Fundamental Medicine (ICBFM SB RAS) and then as a synthetic chemist at Cambridge LLC. From 2008 onwards, he held research and leadership roles in high-tech centers such as “Nanotech-Dubna” and NIIPA, focusing on quantum dots, polymeric materials, and optical sensors 🧪. He also contributed to technology commercialization and industrial process optimization. Since 2024, he has been working at the Institute of General Physics (IOF RAS) on thin-film technologies for microdisplays and solar cells 🌞. His versatile experience spans R&D, team leadership, and complex instrumentation, establishing him as an accomplished figure in chemical technology and nanomaterials 🌐.

🔹 Professional Development 

🧑‍🔧 Sergey Dежуров’s professional development reflects a commitment to innovation, multidisciplinary collaboration, and continuous learning. He has mastered a variety of specialized software tools such as ChemOffice, OriginLab, and MultiChrom for analytical and synthetic chemistry applications 💻. His hands-on expertise covers organic and colloidal synthesis, design of thixotropic gels, development of bioconjugates, and surface modification of nanoparticles. He has independently acquired knowledge in optical and analytical instrumentation software and is proficient in spoken English 🌍. Sergey has played key roles in developing fluorescent microspheres for cytometry, FRET-based sensor systems, and new-generation luminescent materials. He led process engineering and team management in pilot production setups, demonstrating both technical and leadership skills 🧑‍🏫. His involvement in national and international grant-funded projects has further refined his strategic research and development abilities, keeping him at the cutting edge of applied chemistry, nanotechnology, and material science 🌟.

🏅 Awards and Recognitions

  • 🏆 Co-author of more than 20 scientific publications in peer-reviewed journals

  • 📚 Author of 4 patents in the field of luminescent materials and quantum dots

  • 🎓 Contributor to national and international research projects and grants

  • 🧪 Developer of innovative sensor systems using quantum dot-based FRET

  • 🔬 Recognized for high-impact research in nano-optical materials and bioconjugates

  • 🗣️ Regular participant and presenter at scientific conferences in Russia and abroad

🔬 Research Focus

🧪 Sergey Dежуров’s research is deeply rooted in nanomaterials chemistry, focusing on quantum dots, luminescent compounds, and advanced polymer systems. His work encompasses organic and colloidal synthesis, photoaffinity labeling of biomolecules, and bioconjugation techniques relevant to diagnostics and life sciences 💡. A key part of his research includes thin-film technologies for applications in microdisplays and solar cells, and the development of sensor systems based on FRET principles. Sergey has also designed high-stability semiconductor colloidal quantum dots and customized surface modifications for nanoparticles, tailoring properties like charge, polarity, and dispersibility ⚗️. His innovations support cutting-edge applications in optical sensing, nanobiotechnology, and materials engineering. By bridging chemistry with device-level implementation, his work contributes to the development of real-world technologies in areas like biosensors, optoelectronics, and photonics 🌈. His ongoing efforts ensure the evolution of intelligent, functional nanomaterials that drive future-oriented scientific solutions.

Publications & Citations 📚

📄 “Effect of combustion air humidification on the operation of a biomass boiler – Theoretical analysis”Heliyon, 2025 | 📅 Published: 2025 | 🔁 Cited by: 0 | ✍️ Authors: Dlouhý, T.; Havlík, J.

📄 “Improving the energy effectivity of biomass drying for utilisation in energy systems by combining convective and contact drying”Drying Technology, 2024 | 📅 Published: 2024 | 🔁 Cited by: 0 | ✍️ Authors: Havlík, J.; Dlouhý, T.

🔍 Conclusion:

With a unique blend of scientific creativity, technological innovation, and sustained impact, Sergey V. Dezhurov exemplifies the core values of the Best Researcher Award. His pioneering work in functional nanomaterials and sensor systems has contributed meaningfully to modern chemistry, nanotech-based diagnostics, and advanced materials engineering. His candidacy reflects excellence, leadership, and a forward-looking vision in scientific research .

tugba demir caliskan | Polymer chemistry | Best Researcher Award

Assist. Prof. Dr. tugba demir caliskan | Polymer chemistry | Best Researcher Award

Assistant Professor at Ankara University, Turkey.

🔬 Short Biography 🌿💊📚

Dr. Tugba Demir Caliskan 🌟 is a distinguished researcher in Chemical Engineering at Ankara University 🇹🇷. Her expertise spans the synthesis of polymeric films via PECVD 🧪, development of triboelectric nanogenerators ⚡, and creation of self-healing materials 🩹. She holds a Ph.D. 🎓 in Material Science and Engineering from Clemson University, USA 🇺🇸, where her research focused on oleophobic fluorinated polyester coatings. Previously, she earned her M.S. in Mechanical Engineering and B.S. in Chemical Engineering. Dr. Caliskan has extensive experience in polymer synthesis, surface modification, and the development of advanced composites 🧵. She has worked on DARPA-funded projects 💼, developed antifouling surfaces for medical devices 🏥, and contributed to the advancement of materials for water treatment and energy storage 🌊⚙️. Her interdisciplinary work bridges academic research and industrial applications, driving innovation in smart materials and sustainable technologies 🌍.

PROFILE 

ORCID 

GOOGLE SCHOLAR 

🔍 Summary of Suitability:

Dr. Tugba Demir Caliskan is highly suitable for the Best Researcher Award due to her extensive and impactful research contributions in the fields of polymer science, material engineering, nanotechnology, and surface chemistry. With a solid academic background (Ph.D. from Clemson University, USA) and diverse international postdoctoral experience, Dr. Caliskan has consistently demonstrated innovation, interdisciplinary expertise, and scientific excellence throughout her career.

📘 Education & Experience

Dr. Tugba Demir Caliskan’s academic journey began with a B.S. in Chemical Engineering from Izmir Institute of Technology 🇹🇷. She pursued her M.S. in Mechanical Engineering and Ph.D. in Materials Science and Engineering at Clemson University, USA 🇺🇸. Her doctoral research focused on synthesizing oleophobic fluorinated polyester coatings 🧴. Professionally, Dr. Caliskan gained extensive research experience at Clemson University, developing self-healing polymers 🧪, carbon fibers 🧵, and nanomaterials for sensors 🔬. She later contributed as a postdoc at Bilkent University and Ankara University, enhancing medical device surfaces 🏥, developing water treatment composites 💧, and creating energy storage materials ⚡. In 2024, she was appointed Assistant Professor at Ankara University, continuing her pioneering work in polymer chemistry, nanomaterials, and surface engineering 🌟. Her international experience bridges research, development, and application, positioning her as a leader in advanced material synthesis and characterization 🌍.

Professional Development 🚀📖

Throughout her career, Dr. Caliskan has developed exceptional skills in polymer processing and material characterization 🔬. She is proficient in advanced techniques such as ATRP, PECVD, and controlled radical polymerization 🧪. Her hands-on expertise covers a wide array of instruments including NMR, SEM, TEM, AFM, FTIR, and XRD 📊. Dr. Caliskan excels in managing complex research projects, mentoring students 👩‍🎓, and leading interdisciplinary teams 🧑‍🤝‍🧑. She has also taught numerous university courses in organic chemistry, petroleum technology, and chemical engineering labs 📚. Actively participating in international conferences 🌐, she has presented her work globally, fostering collaborations and advancing her field. Dr. Caliskan’s professional growth is marked by her continuous learning, ability to adapt cutting-edge technologies, and dedication to translating research into practical solutions that address real-world challenges 🌍. Her career exemplifies a perfect blend of academic excellence and industrial relevance 🚀.

Research Focus 🔍🤖

Dr. Caliskan’s research revolves around advanced polymer synthesis and surface engineering 🧪. She specializes in self-healing materials 🩹, triboelectric nanogenerators ⚡, oleophobic and hydrophobic coatings 🌊, and stimuli-responsive polymers 🔄. A significant part of her work focuses on fluorinated polymers for water and oil repellency, creating sustainable alternatives to long-chain perfluoroalkyl substances 🌱. She also develops functional materials for medical devices 🏥, such as antifouling surfaces to prevent biofouling. Her expertise extends to carbon dot composites for water treatment 💧, nanomechanical sensors for gas detection 🧯, and advanced composite materials for aerospace and automotive industries ✈️🚗. By combining polymer chemistry, nanotechnology, and material science, Dr. Caliskan addresses critical challenges in energy storage ⚙️, environmental protection 🌍, and healthcare innovation ❤️‍🩹. Her work is highly interdisciplinary, merging chemistry, engineering, and applied sciences to push the boundaries of smart and functional materials 📈.

Awards and Honors 🏆🎖️

  • 🎓 Awarded Turkish Ministry of Education Scholarship for graduate studies in the USA (2007)

  • 🧪 DARPA-funded research projects on advanced carbon fibers and nanocomposites

  • 🌟 Multiple international conference presentations at ACS and other global events

  • 📖 Numerous peer-reviewed journal publications in top materials science and polymer journals

  • 🏅 Recognition for contributing to pioneering research on self-healing polymers and advanced coatings

Publications & Citations 📚

🔬 Key-and-lock commodity self-healing copolymers — M.W. Urban et al., Science 362 (6411), 220-225 (2018) 📅 — Cited by: 341 📖 🔧
💧 Toward a long-chain perfluoroalkyl replacement: Water and oil repellency of polyethylene terephthalate (PET) films modified with perfluoropolyether-based polyesters — T. Demir et al., ACS Applied Materials & Interfaces 9 (28), 24318-24330 (2017) 📅 — Cited by: 29 📖 🧪
🧴 Highly Oil-Repellent Thermoplastic Boundaries via Surface Delivery of CF3 Groups by Molecular Bottlebrush Additives — L. Wei et al., ACS Applied Materials & Interfaces 12 (34), 38626-38637 (2020) 📅 — Cited by: 25 📖 💡
🧪 Micro-cantilever sensors for monitoring carbon monoxide concentration in fuel cells — T.D. Caliskan et al., Journal of Micromechanics and Microengineering 30 (4), 045005 (2020) 📅 — Cited by: 18 📖 🔬
⚗️ Attainment of water and oil repellency for engineering thermoplastics without long-chain perfluoroalkyls: Perfluoropolyether-based triblock polyester additives — L. Wei et al., Langmuir 34 (43), 12934-12946 (2018) 📅 — Cited by: 14 📖 🌊
🏥 A brief report on managing infected nonunion of a high tibial osteotomy in two stages: a case series involving seven knees — V. Karatosun et al., J Bone & Joint Surgery Br 93 (7), 904-906 (2011) 📅 — Cited by: 13 📖 🦴
🧴 Perfluoropolyether-based oleophobic additives: Influence of molecular weight distribution on wettability of polyethylene terephthalate films — T.D. Caliskan et al., Journal of Fluorine Chemistry 244, 109747 (2021) 📅 — Cited by: 10 📖 💦
🧪 Effect of number of –CF3 groups in tails of polyester on surface wettability of coatings: Synthesis and characterization of PFPE based polyesters with three –CF3 groups in tails — T.D. Caliskan et al., Journal of Polymer Research 27 (5), 128 (2020) 📅 — Cited by: 8 📖 🧬
🌊 Toward the Replacement of Long-Chain Perfluoroalkyl Compounds: Perfluoropolyether-Based Low Surface Energy Grafted Nanocoatings — T. Demir Caliskan et al., ACS Applied Polymer Materials 4 (2), 980-986 (2022) 📅 — Cited by: 7 📖 🔧
🎓 Synthesis and characterization of oleophobic fluorinated polyester films — T. Demir, Clemson University Dissertation (2015) 📅 — Cited by: 4 📖 🎯
🌿 Towards a long-chain perfluoroalkyl replacement: Water and oil repellent perfluoropolyether-based polyurethane oligomers — L. Wei et al., Polymers 13 (7), 1128 (2021) 📅 — Cited by: 3 📖 🧫

🔍 Conclusion:

Dr. Tugba Demir Caliskan exemplifies the qualities of a Best Researcher Award recipient through her continuous pursuit of scientific advancement, cross-disciplinary innovation, and real-world problem-solving. Her research not only advances fundamental science but also delivers practical solutions in healthcare, energy, and environmental sustainability. Her global academic presence, cutting-edge publications, and contributions to both academic and industrial sectors make her an outstanding candidate for this prestigious recognition.

 

 

 

 

 

 

Diana Elena Ciolacu | Polymer Chemistry | Best Researcher Award

Dr. Diana Elena Ciolacu | Polymer Chemistry | Best Researcher Award

Senior Researcher at Petru Poni Institute of Macromolecular Chemistry , Romania.

Dr. Diana Elena Ciolacu is a Senior Researcher at the “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, specializing in bioactive and biocompatible materials. With a Ph.D. from “Georghe Asachi” Technical University of Iasi, her research focuses on cellulose-based hydrogels for medical applications. She has authored over 59 scientific articles, including patents and books, and has participated in multiple international fellowships and exchanges. Recognized for her contributions, she actively leads research projects and contributes to academic publications. Her expertise has significantly advanced polymer-based materials for healthcare. 🧬📚🔬💡

PROFILE 

GOOGLE SCHOLAR 

SCOPUS 

ORCID 

🔍 Summary of Suitability:

Dr. Diana Elena Ciolacu exemplifies excellence in scientific research, especially in the field of natural polymers and biocompatible materials. With over 59 scientific publications (45 in ISI-indexed journals), 9 patents, and 16 book chapters, her academic output is substantial and impactful. Her research has wide-reaching applications in medical science, particularly in hydrogels for drug delivery and tissue engineering, showing clear societal benefit. Her international collaborations, multiple fellowships, and leadership in large-scale research projects further solidify her status as a global contributor to science. 🌍📚🔬

Education & Experience

  • PhD in Industrial Chemistry – “Georghe Asachi” Technical University of Iasi, Romania, 2005 🎓

  • Master of Engineering – “Georghe Asachi” Technical University of Iasi, Romania, 1995 🎓

  • Chemical Engineer – “Georghe Asachi” Technical University of Iasi, Romania, 1994 🎓

  • Senior Researcher – “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, 2006–present 🧑‍🔬

Professional Development 🚀📖

Dr. Diana Elena Ciolacu has extensively participated in professional development opportunities, gaining valuable insights through various fellowships and interacademic exchanges across Europe. Notable fellowships include the Socrates-Erasmus Program in Germany, Marie-Curie Fellowship in Slovenia, and several exchanges in Spain, France, and Poland. These experiences have allowed her to enhance her expertise in natural polymers and bioactive materials. Additionally, she has participated in several summer schools focused on green chemistry, nanotechnology, and biomaterials. These international programs have enriched her research perspective and fostered collaborative ties with leading institutions globally. 🌍📈🔬🧪

Research Focus 🔍🤖

Dr. Diana Ciolacu’s research primarily focuses on cellulose-based hydrogels and their medical applications. Her work explores the design, structure-related properties, and biocompatibility of polysaccharide networks for use in controlled drug release, tissue engineering, and wound healing. She also investigates the modification of natural polymers like cellulose and lignin for creating sustainable, functional materials. Her efforts aim to develop innovative biopolymer-based solutions that can improve healthcare outcomes through safer, more effective medical treatments. Through her research, she contributes significantly to advancing biocompatible materials for diverse biomedical applications. 🧬🌱💉🔬

Awards and Honors 🏆🎖️

  • Marie-Curie Fellowship for Transfer of Knowledge – University of Maribor, Slovenia 🎖️

  • Socrates-Erasmus Fellowship – Heinrich Heine University, Germany 🎖️

  • STREAM Fellowship – Mines ParisTech, France 🎖️

  • POSDRU Fellowship – University of Barcelona, Spain 🎖️

  • Project Manager for Innovative Biopolymer-Based Hydrogels Project (MATINOV) 🎖️

  • Guest Editor for Multiple Research Journals – Including Materials and Gels 📚

Publications & Citations 📚

      1. 📘 Amorphous cellulose—structure and characterization – 1039 citations, 2011

      2. 💧 New cellulose–lignin hydrogels and their application in controlled release of polyphenols – 247 citations, 2012

      3. 💊 Cellulose-based hydrogels as sustained drug-delivery systems – 188 citations, 2020

      4. 🧬 The effect of the cellulose-binding domain from Clostridium cellulovorans on the supramolecular structure of cellulose fibers – 152 citations, 2010

      5. ❄️ Physically and chemically cross-linked cellulose cryogels: Structure, properties and application for controlled release – 132 citations, 2016

      6. 🧪 Advanced functional materials based on nanocellulose for pharmaceutical/medical applications – 92 citations, 2021

      7. 🧴 Synthesis and characterization of polyvinyl alcohol/cellulose cryogels and their testing as carriers for a bioactive component – 86 citations, 2012

      8. 🧁 Biosynthesis of dextran by Weissella confusa and its In vitro functional characteristics – 84 citations, 2018

      9. 🩺 Cellulose-based hydrogels for medical/pharmaceutical applications – 81 citations, 2018

      10. 🔬 Enzymatic hydrolysis of different allomorphic forms of microcrystalline cellulose – 55 citations, 2011

      11. 🕸️ Semi-interpenetrating polymer networks containing polysaccharides. I Xanthan/Lignin networks – 53 citations, 2007

      12. ❤️ Natural polymers in heart valve tissue engineering: strategies, advances and challenges – 48 citations, 2022

 🔍 Conclusion:

Dr. Diana Elena Ciolacu stands out as an exemplary researcher whose body of work combines academic rigor, innovation, and real-world applicability. Her sustained contributions to the field of macromolecular chemistry—especially in biomedical applications—make her an ideal candidate for the Best Researcher Award. She not only advances science but also creates tangible benefits for healthcare and sustainability. 🌟👏

 

 

Gaulthier RYDZEK | Polymer materials | Best Researcher Award

Assoc. Prof. Dr. Gaulthier RYDZEK | Polymer materials | Best Researcher Award

Maître de CONFÉRENCES at Montpellier University in France.

Dr. Gaulthier Rydzek 🇫🇷 is an Associate Professor at Montpellier University, ICGM Institute, specializing in polymer chemistry, hybrid materials, and interface functionalization 🧪. With a PhD from Strasbourg and research experience in Japan 🇯🇵, Ireland 🇮🇪, and Canada 🇨🇦, he pioneers nanomaterial innovation for energy and environmental solutions 🌍⚡. Known for electro-click chemistry and saloplastics, he has 39+ publications, 2400+ citations 📈, and leads global collaborations across 12 countries 🌐. He’s also an editor for top journals 📚 and an active member of French chemical societies. His work bridges science and sustainability through cutting-edge research and global cooperation 🌿🔬.

Professional Profile

🔍 Summary of Suitability:

Dr. Gaulthier Rydzek demonstrates exceptional academic excellence and research productivity in polymer chemistry, nanostructured hybrid materials, and electrochemical systems. With a global research journey spanning Canada, France, Japan, and Ireland 🌍, he combines strong interdisciplinary expertise with impactful scientific leadership. His active involvement in editorial roles, international collaborations, and EU-funded projects further showcases his commitment to advancing the field.

🎓 Education:

  • 🧑‍🎓 Bachelor’s & Master’s Degrees – University of Montreal 🇨🇦 & University of Strasbourg 🇫🇷

  • 🎓 PhD in Polymer Thin Films & Electrochemistry – University of Strasbourg (2012) 🇫🇷

  • 📜 Habilitation (HDR) – University of Montpellier (2024) 🇫🇷

💼 Experience:

  • 🔬 Postdoctoral Researcher in Nanoarchitectonics – NIMS, Japan (2013–2018) 🇯🇵

  • 🧫 Researcher in Soft Nanolithography – Trinity College Dublin, Ireland (2018–2019) 🇮🇪

  • 👨‍🏫 Assistant Professor – University of Montpellier (2019–2023) 🇫🇷

  • 👨‍🔬 Associate Professor – University of Montpellier (2023–Present) 🇫🇷

  • 🌍 International Collaborator – Projects in Poland, Ireland, Brazil, China, Vietnam, Philippines 🇵🇱🇮🇪🇧🇷🇨🇳🇻🇳🇵🇭

Professional Development 🚀📖

Dr. Gaulthier Rydzek has pursued continuous professional growth through interdisciplinary research, international collaborations, and editorial leadership 🌍📚. From pioneering nanoarchitectonics in Japan 🇯🇵 to advancing soft nanolithography in Ireland 🇮🇪, he has broadened his scientific horizon across borders. As an editor and board member for top journals 📝, he shapes future research directions. His leadership in EU-funded projects and consultancy with SMEs 🏢💡 reflect his drive for applied innovation. Active in French chemistry and polymer societies 🇫🇷🔬, Gaulthier regularly mentors students and promotes global partnerships, making him a dynamic force in chemical sciences and sustainable material innovation ⚗️🌱

Research Focus 🔍🤖

Dr. Gaulthier Rydzek’s research is centered on polymer chemistry, nanostructured hybrid materials, and electrochemistry 🧪⚡. He develops advanced thin films, self-assembled (co)polymers, and hybrid systems tailored for energy and environmental applications 🌿🔋. His innovative work includes electro-click chemistry, saloplastics, and functional nanomaterials with precise control over size, shape, and function 🧫🧬. These materials are designed for use in drug delivery, thermoelectrics, and ion conduction systems 💊🌡️🔌. Operating at the interface of materials science and green technology, his focus lies in creating sustainable solutions through smart chemical engineering and international collaboration 🌍🔬♻️

 Awards and Honors 🏆🎖️
  • 🏆 Award Category Preference: Nominated for the Best Researcher Award by the International Chemical Scientist Awards

  • 🧪 Editorial Honors:

    • Associate Editor – Frontiers in Batteries and Electrochemistry

    • Board Member – Journal of Applied Materials and Technology

    • Special Issue Editor for Materials, Molecules, and Polymers journals 📝📚

  • 🌍 International Collaboration Grants: Secured 6 international research fundings across Poland, Ireland, Brazil, China, Vietnam, and the Philippines for innovation in materials science

  • 📊 High Research Impact: Over 2400 citations and h-index of 20 on Google Scholar

Publications & Citations 📚

📘 Layer-by-layer nanoarchitectonics: invention, innovation, and evolution (2014) – Cited by 1055 📈🧪🔬
📘 Electrochemical nanoarchitectonics and layer-by-layer assembly: From basics to future (2015) – Cited by 334 ⚡🧬🧩
📘 Efficient gas and water vapor barrier properties of thin PLA films: Nafion & clay multilayers (2014) – Cited by 111 🌫️💧📦
📘 Polymer multilayer films via electrochemically catalyzed click chemistry (2010) – Cited by 90 🧷⚗️🎯
📘 Microstructural analysis of Al–WC composites via spark plasma sintering (2017) – Cited by 83 🔥🧱🔍
📘 Electrotriggered self-assembly of metal–polyphenol nanocoatings (2017) – Cited by 80 🧪🍵🔄
📘 Electrochemically triggered morphogen-driven film buildup (2011) – Cited by 66 ⚡🧱🎨
📘 Strategies for covalently reticulated polymer multilayers (2012) – Cited by 64 🧬🧵💡
📘 Nonphospholipid liposomes with photocontrolled release (2014) – Cited by 57 🌞💊📤
📘 Electropolymerization & electro-click for versatile surfaces (2014) – Cited by 45 ⚡🧲🧽
📘 Extrusion & microstructure of Al–B4C composites by stir casting (2018) – Cited by 44 🌀🔧🔩

 🔍 Conclusion:

Dr. Gaulthier Rydzek’s groundbreaking innovations, international leadership, and outstanding research track record make him an ideal candidate for the Best Researcher Award. His work not only advances scientific understanding but also delivers practical solutions for energy and environmental challenges, embodying the spirit of research excellence and global impact. 🏆🌱🔬