Dr.Shuang Guo | Spectroscopy | Best Researcher Award |
Teacher | Nanyang Institute of Technology | China
Dr. Shuang Guo is a dedicated materials scientist affiliated with the Nanyang Institute of Technology, Nanyang, China. With a growing international research presence, Dr. Guo has contributed significantly to the fields of chalcogenide phase-change materials, optical spectroscopy, and luminescent functional materials. His research primarily focuses on the structural, electronic, and photonic properties of advanced materials for next-generation data storage, energy conversion, and optoelectronic applications.Throughout his academic career, Dr. Guo has authored 28 scientific publications, which have collectively garnered over 509 citations, reflecting his active engagement and influence within the materials science community. His h-index of 11 underscores the sustained relevance and academic impact of his research contributions. Recent works, such as “Raman scattering spectroscopy study on chalcogenide phase-change materials” and “Insight into Cr³⁺-activated NIR phosphor with extremely high thermal stability for NIR LEDs” (2025), highlight his innovative approach to understanding phase transitions and optimizing photoluminescent behavior in complex material systems.Dr. Guo’s collaborative spirit is evident from his work with over 70 co-authors across interdisciplinary domains including physics, chemistry, and engineering. His studies bridge fundamental science with technological applications, offering insights crucial to the development of energy-efficient lighting, high-density data storage, and thermally stable luminescent devices. Beyond publications, his research contributes to advancing sustainable technologies and enhancing material performance under extreme conditions—key to progress in the semiconductor and optoelectronics industries. With a strong foundation in spectroscopic analysis and solid-state chemistry, Dr. Guo continues to drive scientific innovation through rigorous experimentation and collaborative inquiry, strengthening global research connections in the rapidly evolving landscape of materials science.