Jeffrey Amelse | Environmental Chemistry | Best Researcher Award

Dr. Jeffrey Amelse | Environmental Chemistry | Best Researcher Award

Invited Contributor at University of Aveiro, Portugal

Dr. Jeffrey A. Amelse is an accomplished chemical engineer, researcher, and educator with a distinguished career spanning academia and industry. He earned his Ph.D. in Chemical Engineering from Northwestern University and went on to make significant contributions to catalysis, molecular sieves, petrochemical process design, and carbon sequestration technologies. With over three decades at BP Amoco Chemical Company, he played a pivotal role in developing and commercializing advanced paraxylene technologies, molecular sieve catalysts, and innovative process designs that remain influential in the petrochemical sector. Following his industrial career, he transitioned to academia as an Invited Teaching Professor at the University of Aveiro in Portugal, where he continues to shape the future of energy, catalysis, and sustainability through teaching and research. Currently, as Lead Scientist at Carbon Sequestration, Inc., he pioneers low-cost, natural methods for carbon dioxide removal. His legacy reflects a rare blend of industrial leadership, academic excellence, and innovation.

Professional Profile 

Dr. Amelse’s academic foundation in chemical engineering is marked by rigorous training and a passion for applied research. He earned his Bachelor of Science in Chemical Engineering from the University of Illinois at Urbana-Champaign. He then pursued graduate studies at Northwestern University, obtaining his Master of Science in Chemical Engineering followed by a Ph.D. His doctoral research, under Professors John Butt and Lyle Schwartz, focused on “Silica Supported Iron Bimetallic Catalysts for the Fischer-Tropsch Synthesis,” combining catalyst characterization with performance evaluation—a project that reflected his early interest in bridging fundamental chemistry with industrial applications. Beyond formal degrees, he pursued numerous continuing education courses throughout his career, covering refining, petrochemicals, and biofuels. This extensive educational background not only equipped him with technical expertise but also laid the groundwork for his later innovations in catalysis, petrochemical processes, and sustainable energy technologies, enabling him to contribute across academia and industry.

Experience 

Dr. Amelse’s professional journey integrates high-level industrial leadership, academic teaching, and cutting-edge research. At BP Amoco Chemical Company, he was a core team member in designing world-scale paraxylene crystallization units, developing next-generation catalysts, and leading U.S. Department of Energy–sponsored projects on ammonia absorption refrigeration. He also guided international collaborations, including projects in Belgium, India, Portugal, and the UK, making significant contributions to global petrochemical technology. After retiring from BP Amoco, he joined the University of Aveiro as an Invited Teaching Professor, lecturing on biofuels, refining, and petrochemicals while contributing to molecular sieve research using solid-state NMR. Currently, he serves as Lead Scientist at Carbon Sequestration, Inc., leading commercialization of woody biomass burial for carbon dioxide removal. His experience highlights a career that bridges innovation, teaching, and sustainability, demonstrating his ability to drive transformative advances across both industrial and academic landscapes.

Professional Development

Throughout his career, Dr. Amelse actively pursued professional development to remain at the forefront of chemical engineering and energy research. At BP Amoco, he became a trained leader in HAZOP and LOPA safety analysis techniques, guiding critical plant safety design studies. He also served as an instructor for internal technical courses on paraxylene catalysis and process technologies, reflecting his commitment to knowledge transfer within industry. His collaborations with leading universities, including Cambridge University and the University of Aveiro, provided opportunities to mentor graduate students and postdoctoral researchers, strengthening academia-industry ties. More recently, he expanded his expertise into renewable energy and climate solutions, developing a micro-module on Global Warming, Renewable Energy, and Decarbonization for the European Consortium of Innovative Universities. His continual engagement with new technologies, from biofuels to biomass carbon sequestration, exemplifies lifelong learning and adaptation. This pursuit of professional growth underscores his leadership in advancing energy innovation and sustainability.

Skills & Expertise

Dr. Amelse possesses a rare combination of technical, analytical, and leadership skills in catalysis, process design, and sustainable energy solutions. He is recognized as an expert in molecular sieve synthesis and characterization, having applied advanced techniques such as solid-state NMR to study catalytic materials. His proficiency in ASPEN process simulation and HTRI heat exchanger design software enabled him to lead complex petrochemical process designs with strong economic and technical insight. He also has deep expertise in the aromatics marketplace, including paraxylene process technologies, competitive benchmarking, and licensing strategies. In addition to technical mastery, he is skilled in safety leadership through HAZOP and LOPA methodologies, ensuring safe and efficient operations. His teaching and mentoring roles highlight his ability to translate complex scientific concepts into practical applications. Today, his expertise extends into biomass burial technologies for carbon sequestration, making him a versatile innovator in both conventional petrochemicals and emerging sustainable energy fields.

Resarch Focus

Dr. Amelse’s research has consistently advanced the frontiers of catalysis, petrochemicals, and sustainable energy. His early work focused on catalyst development and reactor modeling for xylene isomerization and paraxylene production, where he pioneered molecular sieve catalyst characterization and design methodologies still in use today. He contributed to the development of novel catalysts for dehydrogenation, transalkylation, and isomerization processes, resulting in patents that improved energy efficiency and selectivity in petrochemical operations. In academia, his research shifted toward renewable energy, exploring biofuels from cellulosic biomass and molecular sieve applications in green chemistry. Currently, his focus lies in carbon sequestration, specifically the commercialization of woody biomass burial as a low-cost and natural method for carbon dioxide removal. His work also explores catalytic oxidation of biomethane and novel bio-aromatic conversion processes. By integrating catalysis, process design, and climate solutions, his research exemplifies innovation at the intersection of chemical engineering and sustainability.

Awards & Recognitions

Dr. Amelse’s career achievements have been recognized through numerous grants, patents, and scholarly contributions. While at BP Amoco, he received special grants from the Head of Technology and the Distributed Research Laboratory to sponsor advanced academic collaborations at the University of Aveiro and Cambridge University. His patents—spanning paraxylene recovery, catalyst design, refrigeration systems, and biomass conversion—demonstrate his innovation and impact, with technologies implemented at industrial scale. His process for recovering germanium from optical fiber effluents, developed at Bell Labs, was notable enough to be featured in The New York Times. In academia, his contributions to climate education were recognized through his development of a European Consortium module on global warming and sustainability. His publications in leading journals, chapters in Industrial Arene Chemistry, and invited lectures further highlight his influence. Collectively, these recognitions underscore his reputation as a pioneering researcher, mentor, and innovator in chemical engineering and sustainability.

Publication Top Notes 

Title: A European Consortium of Innovative Universities Micromodule on Global Warming, Renewable Energy, and Decarbonization
Authors: J.A. Amelse
Year: 2025

Title: Terrestrial Storage of Biomass (Biomass Burial): A Natural, Carbon-Efficient, and Low-Cost Method for Removing CO₂ from Air
Authors: J.A. Amelse
Year: 2025

Title: BP/Amoco Paraxylene Crystallization Technology
Authors: J.A. Amelse
Year: 2023

Title: Reactions and Mechanisms of Xylene Isomerization and Related Processes
Authors: J.A. Amelse
Year: 2023

Title: Sequestering Biomass for Natural, Carbon Efficient, and Low-Cost Direct Air Capture of Carbon Dioxide
Authors: J.A. Amelse, P.K. Behrens
Year: 2022

Dr. Amelse is a highly deserving candidate for the Best Researcher Award. His lifelong contributions to catalysis, petrochemicals, renewable energy, and carbon sequestration reflect both depth and breadth of expertise. His patents and publications demonstrate originality and industrial impact, while his teaching and mentoring underscore his role in shaping future scientists. Although further visibility of his research impact metrics (citations, h-index) and a stronger articulation of future directions could enhance his case, his record already places him among the leading researchers globally.

Patrycja Żak | Environmental Chemistry | Women Researcher Award

Assoc. Prof. Dr. Patrycja Żak | Environmental Chemistry | Women Researcher Award

Associate Professor, UAM Poznań, Poland.

Dr. Patrycja Żak is an Associate Professor in the Department of Organometallic Chemistry at Adam Mickiewicz University in Poznań, Poland. She holds a distinguished academic and research career focused on green chemistry, organometallic synthesis, and functional nanomaterials. With over 47 peer-reviewed publications and 16 patents, her contributions span catalysis, silsesquioxane chemistry, and environmentally friendly synthetic methodologies. A highly respected scientist, she has led multiple national and European research projects and mentored doctoral candidates. Her scientific work emphasizes sustainable practices through the use of organocatalysis and mechanochemistry. Dr. Żak is a collaborative researcher, partnering with international and national institutions to expand the frontiers of materials and inorganic chemistry. Her dedication has earned her a place in prestigious scientific networks and journals as a reviewer and contributing author. Through her innovative and impactful work, Dr. Żak exemplifies excellence in chemical research and its practical application.

Professional Profile 

Dr. Patrycja Żak completed her entire academic education at Adam Mickiewicz University in Poznań, Poland, where she laid the foundation for her scientific journey. She earned her Master of Science degree in Chemistry under the supervision of Prof. Marciniec. Continuing under the same mentor, she pursued and successfully defended her Ph.D. in Chemistry , focusing on advanced organometallic systems. Demonstrating a consistent trajectory of academic growth, she achieved her habilitation at the same institution, a significant milestone in European academia reflecting her independent research capabilities and teaching qualifications. Her educational path reflects a deep commitment to chemical sciences, and her studies were grounded in synthetic and structural chemistry, particularly relating to silicon-based compounds and catalysts. This solid academic base has underpinned her research excellence, enabling her to contribute meaningfully to interdisciplinary fields, particularly in developing green and sustainable chemical methods.

Experience 

Dr. Żak has accumulated over 15 years of academic and research experience at Adam Mickiewicz University. She began her professional career as an adjunct faculty member and was promoted to Associate Professor. Her work has been briefly paused due to maternity leaves and a short health-related hiatus, but she returned to academia with renewed vigor. During her tenure, she has taken on roles beyond teaching and research, including supervising doctoral projects and serving on selection commissions for post-doc and master’s program candidates. She has actively contributed to collaborative research with international scientists and led industry-related projects, such as the development of efficient synthesis methods at AdvaChemLab. Her extensive project portfolio includes national grants like OPUS, SONATA, and MAESTRO, where she served as both investigator and principal investigator. These experiences have shaped her as a leader in her field, merging academic excellence with research innovation and mentorship.

Professional Development

Throughout her career, Dr. Żak has consistently engaged in professional development activities to enhance her academic and research contributions. She is a member of the Polish Chemical Society and has served as a reviewer for prestigious journals such as ChemSusChem, Inorganic Chemistry, and ChemCatChem. She also acted as a tutor in Environmental and Material Chemistry and served on several selection commissions for post-doc and master’s program candidates. Dr. Żak participated as an organizing committee member for the 8th European Silicon Days Conference. Internationally, she broadened her expertise through a six-month research exchange under the Socrates-Erasmus Program in Belgium. She continually refines her skills through leading-edge research projects and supervising doctoral candidates. These roles reflect her commitment to staying at the forefront of chemical science, emphasizing collaborative growth, academic integrity, and leadership in research dissemination, all of which have significantly contributed to her development as an esteemed scientist in organometallic and green chemistry.

Skills & Expertise

Dr. Patrycja Żak possesses an extensive skill set that bridges experimental chemistry, project leadership, and academic mentorship. She is highly proficient in organometallic synthesis, catalysis (particularly organocatalysis), and mechanochemical methods, enabling the development of green and efficient chemical transformations. Her expertise includes the design and functionalization of silicon-based nanomaterials such as silsesquioxanes. She has demonstrated strong abilities in analytical characterization techniques, photophysical studies, and collaborative interdisciplinary research. She effectively manages national and European research grants, showcasing organizational and leadership capabilities. In academia, she is skilled in curriculum development, supervising postgraduate students, and contributing to peer review and academic publishing. Furthermore, her role in organizing international conferences and reviewing for high-impact journals highlights her communication and evaluative skills. Her ability to innovate while adhering to sustainability principles marks her as a skilled and future-ready researcher in both academic and applied chemical sciences.

Resarch Focus

Dr. Patrycja Żak’s primary research focus lies at the intersection of Green Chemistry, Organometallic Chemistry, and Material Chemistry. Her work emphasizes the design of environmentally friendly and sustainable synthetic methods using organocatalysis and mechanochemistry. She is particularly focused on eliminating hazardous solvents and toxic metal-based catalysts by developing N-heterocyclic carbene-catalyzed transformations. Her research also targets the synthesis and functionalization of silsesquioxanes and nanomaterials with well-defined thermal and photochemical properties. Additionally, she explores thioester and heterocycle synthesis from unsaturated aldehydes and other functionalized compounds, contributing to the growing demand for sustainable, efficient chemical pathways. The research she leads aligns with cutting-edge themes in chemical sustainability, structure-property relationships in hybrid materials, and catalyst design for selective transformations. Her projects consistently follow the principles of atom economy and eco-compatibility, placing her work firmly within the green and sustainable chemistry category, with wide applications in pharmaceuticals, materials science, and nanotechnology.

Awards & Recognitions

Dr. Żak’s scientific excellence is reflected in her numerous achievements and recognitions. She has published 47 papers in Scopus-indexed journals, with an additional paper accepted and one under minor revision, showcasing consistent high-quality output. Her work has received over 662 citations in Scopus and 527 in Web of Science, with an h-index of 14, signifying both productivity and scholarly impact. She has authored chapters in scientific books and contributed to academic handbooks, such as the “Laboratory Experiments in Basic Inorganic Chemistry.” Moreover, her innovation has led to 16 patents across multiple jurisdictions including the US, EU, China, and Poland. She has also served as project manager and principal investigator for prestigious national projects including SONATA, POMOST, and OPUS. In addition, she plays a pivotal role in guiding doctoral candidates under Poland’s “Initiative of Excellence” programs. These distinctions underline her commitment to impactful, innovative, and globally relevant chemical research.

Publication Top Notes 

Conclusion:

Overall, Dr. Patrycja Żak is an exceptionally strong candidate for the Women Researcher Award. Her impressive academic productivity, innovation in sustainable chemistry, mentorship record, and project leadership clearly match the criteria for recognizing excellence among women in science. Minor enhancements, such as expanding industrial collaborations and increasing policy outreach, could further amplify her profile in the future. Nonetheless, she fully deserves acknowledgment as a role model inspiring future generations of women scientists working toward a greener and more sustainable world.

Zhihua Sun | Environmental Chemistry| Best Researcher Award

Mr. Zhihua Sun | Environmental Chemistry| Best Researcher Award

Associate Professor at College of Animal Science & Technology, Shihezi University , China .

🔬 Short Biography 🌿💊📚

Dr. Zhihua Sun is an Associate Professor and Department Head at the College of Animal Science & Technology, Shihezi University. He earned his Ph.D. in Biochemistry and Molecular Biology in 2020 and has since led eight research projects, published 61 peer‑reviewed articles, and filed eight patents (five granted) in veterinary drug formulations and diagnostics. As a council member of the Chinese Association of Animal Science & Veterinary Medicine and editorial board member for SCI‑indexed journals, Dr. Sun bridges academia and industry. His pioneering colloidal‑gold rapid diagnostic kit for brucellosis—commercialized for 3 million CNY—exemplifies his commitment to translational research and rural health development

🔍 Summary of Suitability:

Dr. Zhihua Sun exemplifies the qualities of a leading young researcher: a strong publication record, patents that translate into high‑impact diagnostics, and active roles in professional societies and editorial boards. His work on Brucella–host molecular interactions and rapid diagnostic technologies addresses urgent needs in animal and public health, particularly in rural settings.

PROFILE 

ORCID 

📘 Education

Dr. Zhihua Sun earned his Ph.D. in Biochemistry and Molecular Biology in 2020, demonstrating advanced expertise in molecular-level investigations of animal health. Prior to his doctoral studies, he completed both Bachelor’s and Master’s degrees (details available upon request) with strong academic performance and research components. His rigorous training has equipped him with deep theoretical knowledge and practical laboratory skills essential for pioneering work in veterinary pharmacology, toxicology, and diagnostic innovation.

Professional Experience

Since 2020, Dr. Sun has served as Associate Professor and Department Head at the College of Animal Science & Technology, Shihezi University, overseeing curriculum development and faculty mentorship. He is a Council Member of the Veterinary Pharmacology & Toxicology Branch of the Chinese Association of Animal Science and Veterinary Medicine and contributes as a Youth Editorial Board Member for the Journal of Shihezi University and as Guest Editor for the SCI-indexed journal Microorganisms. He has led eight research projects, guided two industry consultancy initiatives, and authored three technical standards adopted by the Xinjiang Production and Construction Corps.

Skills & Expertise 🛠️

Dr. Sun excels in biochemistry, molecular biology, and veterinary drug formulation. He has filed eight patents (five granted) for novel veterinary therapeutics and rapid-diagnostic devices. His proficiencies include network analysis of host–pathogen interactions, colloidal gold immunoassay development, and large-scale technology transfer. He is adept at project management, grant writing, and collaborative leadership—evident in his coordination of multidisciplinary teams across academia and industry to accelerate rural health solutions.

Research Focus 🔍🤖

Dr. Sun’s research centers on traditional Chinese veterinary medicine and sustainable resource utilization of animal manure. His landmark work elucidates the molecular mechanisms of Brucella–host interactions via LncRNA–mRNA regulatory networks, revealing key inflammatory signaling pathways. He has also developed rapid, sensitive, and cost‑effective colloidal gold diagnostic kits and new vaccine candidates for brucellosis, ensuring grassroots‑level applicability across serum, whole blood, plasma, and milk samples. His innovations directly address zoonotic disease control and livestock health.

Awards and Honors 🏆

  • Second Prize in Natural Science, Military‑Civilian Integration Commission, for his Brucella–host interaction study

  • Eight Patents Filed (five granted) for veterinary drug formulations and diagnostics

  • Four Technical Standards adopted by the Xinjiang Production and Construction Corps

  • Technology Transfer Success: 3 million CNY for colloidal gold brucellosis diagnostic kit

  • Editorial Appointments: Youth Editorial Board Member and Guest Editor roles recognize his scientific leadership and peer‑review expertise

Publications & Citations 📚

  1. Title: Study on the Optimization of Concrete Screeds in Zootechnical Farms
    Authors: Moldoveanu, Marta Ioana; Manea, Daniela Lucia; Jumate, Elena; Fechete, Radu; Tintisan, Maria Loredana; Siomin, Adrian Cristian
    Year: 2022

  2. Title: Archaeological Works in the Land of Lapus
    Authors: Moldoveanu, Marta Ioana; Popa, Paut; Manea, Daniela Lucia
    Year: 2019

🔍 Conclusion:

Dr. Sun is a compelling candidate for the Research for Best Researcher Award. His blend of innovative science, tangible technology transfer, and leadership within both academic and industry spheres meets—and exceeds—the award’s criteria for excellence, impact, and service. With targeted efforts to elevate his international presence and mentorship portfolio, he is poised to become a global leader in veterinary biomedical research

Habib Ullah | Green Chemistry | Best Researcher Award

Dr. Habib Ullah | Green Chemistry | Best Researcher Award

Post doctorate researcher at Zhejiang University, China.

🔬 Short Biography 🌿💊📚

Dr. Habib Ullah 🇵🇰 is an accomplished environmental scientist 🌱, currently working as a Postdoctoral Researcher at Zhejiang University 🇨🇳. With a strong academic background in Environmental Science & Engineering, Dr. Ullah specializes in environmental pollution remediation, biochar technologies, and the application of machine learning 🤖 for predictive adsorption and emission control. His multidisciplinary expertise spans soil chemistry, energy recovery, and trace element detoxification. Over the years, he has contributed extensively to top-tier journals 📚, collaborating on international research projects aimed at improving environmental sustainability 🌍. From the mountainous terrains of Pakistan to cutting-edge Chinese research institutes, his work demonstrates a commitment to global environmental betterment. Passionate about innovation, Dr. Ullah integrates advanced materials like nanocatalysts and bioenergy solutions into eco-friendly applications. Beyond research, he enjoys reading 📖, cricket 🏏, and badminton 🏸, reflecting a well-rounded personality. His efforts continue to bridge science and environmental responsibility through impactful research. 🧪🌿

PROFILE 

ORCID 

🔍 Summary of Suitability:

Dr. Habib Ullah stands out as an exceptionally qualified candidate for the Best Researcher Award. His extensive research contributions in environmental science, especially in pollution remediation, biochar innovation, and sustainable waste-to-energy technologies, reflect a consistent pursuit of scientific excellence 🌱🔬. With a strong publication record in high-impact journals, collaborations with leading global researchers, and involvement in cutting-edge research funded by prestigious agencies, Dr. Ullah exemplifies the qualities of a top-tier researcher. His ability to integrate machine learning with environmental engineering to solve real-world problems further showcases his forward-thinking approach to science 🤖🌍.

📘 Education & Experience

🎓 Education:

  • 📚 Ph.D. in Environmental Science & Engineering (2015–2019) – University of Science and Technology of China 🇨🇳

  • 📘 M.Sc. (Hons.) in Environmental Sciences (2011–2013) – Arid Agriculture University, Rawalpindi 🇵🇰

  • 🌲 B.S. (Hons.) in Forestry (2006–2010/11) – Shaheed Benazir Bhutto University, Khyber Pakhtunkhwa 🇵🇰

💼 Experience:

  • 🧪 Postdoctoral Researcher (2023–Present) – Innovation Center of Yangtze River Delta, Zhejiang University 🇨🇳

  • 🌏 Postdoctoral Researcher (2019–2023) – College of Environmental and Resource Sciences, Zhejiang University 🇨🇳

Professional Development 🚀📖

Dr. Habib Ullah’s professional journey is characterized by persistent learning, collaboration, and impactful research 💼🔬. He has actively participated in numerous national and international research projects, focusing on pollutant transformation, toxic element remediation, and the geochemical behavior of coal and biomass-based materials 🔍🌿. His engagement with the National Natural Science Foundation of China and other prestigious institutions has enriched his analytical skills in environmental chemistry and risk assessment 🧪📊. With significant exposure to machine learning applications 🤖 in environmental systems and a growing portfolio of high-impact publications 📚, Dr. Ullah is committed to bridging scientific understanding with real-world applications. His work extends to supervising junior researchers, contributing to peer-reviewed journals, and presenting at global conferences 🌍🎤. He continues to explore innovative remediation technologies using biochar, nanomaterials, and plant-based solutions for sustainable development. His multidisciplinary outlook makes him a valuable contributor to solving emerging environmental challenges. 🌎🌱

Research Focus 🔍🤖

Dr. Habib Ullah’s research focuses on environmental remediation and sustainable pollutant management 🌍🧪. His work spans the detoxification of heavy metals and trace elements, such as selenium and cadmium, using advanced biochar and nanomaterials 🌿🧲. He emphasizes machine learning approaches 🤖 to predict the adsorptive behavior of materials, enhancing the precision and efficiency of pollutant removal technologies. Dr. Ullah also explores phytoextraction 🌱, soil chemistry, and the circular conversion of biomass and industrial waste into eco-functional materials ♻️. His multi-faceted research includes the analysis of bioenergy potential from biomass, risk assessments of pollutants, and environmental lifecycle analysis of industrial emissions 🏭📉. His expertise bridges environmental science, energy engineering, and biotechnology, fostering sustainable technologies for air, soil, and water restoration 🌫️🌊🌾. His vision is driven by creating a pollution-free environment through low-cost, effective, and scalable solutions that serve both scientific advancement and societal well-being 🌟.

Awards and Honors 🏆🎖️

  • 🥇 CSC Scholarship – Awarded for Ph.D. studies in China (2015)

  • 🏆 M.Sc. (Hons.) Scholarship – Granted by the Government of Pakistan (2011)

  • 🎖️ B.S. (Hons.) Scholarship – Awarded by the KPK Government (2006).

Publications & Citations 📚

  • Machine learning-aided biochar design for the adsorptive removal of emerging inorganic pollutants in water.
    Authors: Ullah H, Khan S, Zhu X, Chen B, Rao Z, Wu N, Idris AM
    Journal: Sep Purif Technol
    Year: 2025

  • Long-term phytoextraction potential of Celosia argentea on Cd and Mn co-contaminated soils.
    Authors: Yu G, Ullah H, Lin H, et al.
    Journal: J Environ Chem Eng
    Year: 2024

  • Microbe-assisted phytoremediation of toxic elements in soils.
    Authors: Yu G, Ullah H, Yousaf B, et al.
    Journal: Earth-Sci Rev
    Year: 2024

  • A critical review on selenium removal from water using biosorbents.
    Authors: Ullah H, Chen B, Rashid A, et al.
    Journal: Environ Pollut
    Year: 2023

  • Machine learning prediction of Fe-modified biochar adsorption capacity for selenium.
    Authors: Ullah H, Khan S, Chen B, et al.
    Journal: Carbon Res
    Year: 2023

  • Bacterial inactivation and organic pollutant degradation using Ag₂O/Ba/TiO₂ nanocomposite.
    Authors: Ullah H, Elahi I, Saleem S, et al.
    Journal: Catalysts
    Year: 2025

  • Nickel-modified orange peel biochar for dye removal.
    Authors: Kanwal A, Abid J, Ullah H, et al.
    Journal: Water
    Year: 2025

  • Transforming apricot shell into multifunctional photocatalyst.
    Authors: Lian F, Batool F, Ullah H, et al.
    Journal: Front. Environ. Sci.
    Year: 2025

  • A review on catalytic co-pyrolysis of biomass and plastics waste.
    Authors: Mo F, Ullah H, Zada N, et al.
    Journal: Energies
    Year: 2023

  • Cadmium uptake and membrane transport in Amaranthus hypochondriacus.
    Authors: Han M, Ullah H, Yang H, et al.
    Journal: Environ Pollut
    Year: 2023

  • Physicochemical characteristics of torrefied orange peel.
    Authors: Ullah H, Lun L, Riaz L, et al.
    Journal: Biomass Convers Biorefin
    Year: 2021

  • Influence of hydrothermal treatment on selenium emission from coal.
    Authors: Ullah H, Chen B, Shahab A, et al.
    Journal: J Clean Prod
    Year: 2020

  • Combustion characteristics of torrefied biomass with coal.
    Authors: Ullah H, Liu G, Yousaf B, et al.
    Journal: Bioresour Technol
    Year: 2017

  • Environmental transformation of selenium: A comprehensive review.
    Authors: Ullah H, Liu G, Yousaf B, et al.
    Journal: Environ Geochem Health
    Year: 2018

  • Hydrothermal dewatering of low-rank coals: Properties and combustion.
    Authors: Ullah H, Liu G, Yousaf B, et al.
    Journal: Energy
    Year: 2018

  • Developmental selenium exposure and health risk in foodstuffs.
    Authors: Ullah H, Liu G, Yousaf B, et al.
    Journal: Ecotoxicol Environ Saf
    Year: 2018

  • Climate change perceptions in Swat District, Pakistan.
    Authors: Ullah H, Rashid A, Liu G, et al.
    Journal: Urban Clim
    Year: 2018

🔍 Conclusion:

Dr. Habib Ullah exemplifies the attributes of a Best Researcher Award recipient—innovation, productivity, impact, and dedication. His research not only advances scientific understanding but also addresses critical environmental challenges affecting communities worldwide 🌏. With a blend of academic rigor, cross-disciplinary expertise, and practical application, Dr. Ullah’s work has made meaningful contributions to environmental sustainability. His recognition through this award would honor a career devoted to excellence and inspire future generations of researchers. 🏅🌟

 

 

Basudeb Saha | Green Chemistry | Best Researcher Award

Prof. Dr. Basudeb Saha | Green Chemistry | Best Researcher Award

Director of Studies for Chemical Engineering and Associate Director of the Centre for Global Eco-Innovation at Lancaster University, United Kingdom.

Professor Basudeb Saha 🧪 is an internationally acclaimed Chemical Engineering academic with over 26 years of experience in UK higher education 🏛️. Currently serving as the Director of Studies at Lancaster University 🇬🇧, he is recognized for his innovation in green and sustainable technologies 🌿⚗️. With a PhD in Chemical Engineering from the Institute of Chemical Technology, Mumbai 🎓, Prof. Saha has led over 50 research projects and supervised numerous PhD scholars 👨‍🔬👩‍🔬. His scholarly impact includes over 5450 Google Scholar citations 📚 and 7 international patents. A committed leader and educator, he has held visiting professorships across Spain, Japan, and Malaysia 🌍. He was honoured with the “Jewel of India Award” 🏅 for his contributions to Chemical Engineering. His work spans greener process development, carbon capture, and renewable energy solutions ⚡, making him a trailblazer in sustainable engineering.

PROFILE 

ORCID 

SCOPUS 

GOOGLE SCHOLAR 

🔍 Summary of Suitability:

Professor Basudeb Saha brings over 26 years of robust academic and industrial research experience, marked by global recognition and multidisciplinary impact 🌐. He has led more than 50 research projects, co-invented 7 international patents, and published over 215 scholarly works, including 100+ in peer-reviewed journals 📚. His h-index of 39 (Google Scholar) and over 5450 citations testify to his influence in the scientific community 📈. His leadership in projects funded by EPSRC, UKRI, Royal Society, and international agencies demonstrates his ability to conduct world-class research with real-world applications 💡. His research spans green chemistry, renewable energy, carbon capture, and sustainable process engineering—critical to global sustainability challenges 🌍♻️.

📘 Education & Experience

Education

  • 🎓 PhD (Chemical Engineering), Institute of Chemical Technology, Mumbai, India (1996)

  • 🎓 M.E. (Chemical Engineering), Indian Institute of Science, Bangalore, India (1994)

  • 🎓 B.Tech (Chemical Engineering), University of Calcutta, India (1992)

Experience

  • 🧑‍🏫 Director of Studies, Chemical Engineering, Lancaster University, UK (2022–Present)

  • 🧪 Associate Director, Centre for Global Eco-Innovation, Lancaster University

  • 🏅 Honorary Professor, Brunel University London

  • 👨‍🔬 Professor of Chemical Engineering, London South Bank University (2010–2020)

  • 📘 Reader, Senior Lecturer, Lecturer – Loughborough University (1999–2010)

  • 🔬 Postdoctoral Research Associate, Loughborough University (1997–1999)

Professional Development 🚀📖

Professor Saha’s career reflects an unwavering commitment to professional growth and academic excellence 🌟. As a Chartered Engineer (CEng) 🏗️ and Fellow of prestigious institutions such as IChemE, RSC, and HEA 🎖️, he continually contributes to the advancement of Chemical Engineering education and research. He actively serves on multiple editorial boards 📚 and as an accreditation assessor for IChemE, shaping academic standards worldwide. His collaboration across 15+ countries 🌍 and leadership in multi-million-pound research projects (~£11 million) demonstrate his strategic ability to unify academia and industry. He has played key roles in REF submissions, chaired conferences, and mentored numerous early-career researchers 👨‍🏫. From pioneering green process engineering to leading innovative CO₂ conversion studies, Prof. Saha exemplifies proactive professional development through impact-driven initiatives and global outreach 🔬🌐.

Research Focus 🔍🤖

Professor Saha’s research focuses on developing greener, sustainable, and circular chemical processes 🌱🔁. His work is deeply rooted in green chemistry principles and aims to address global environmental challenges through innovative engineering solutions ♻️. Core areas include carbon dioxide capture and utilization (CCU) 🌫️➡️🧪, waste valorisation, renewable energy solutions ☀️, and process intensification such as reactive distillation and membrane separations ⚗️. He also contributes to net-zero carbon emission technologies and low-carbon energy systems 🔋. With over 215 publications and 7 patents, Prof. Saha’s interdisciplinary approach integrates catalysis, process engineering, and sustainability frameworks to deliver real-world impact 🌍. His research has influenced policy, industry, and education across the UK and internationally, including Europe, Asia, and Africa 🌐. Through strong industrial and academic partnerships, he continues to lead high-impact projects on biofuels, epoxidation, and eco-innovations that drive the transition to cleaner, more efficient chemical manufacturing 🔄🌿.

Awards and Honors 🏆🎖️

    • 🏅 “Jewel of India” Award by NRI Welfare Society (2020)

    • 🧪 Finalist, IChemE Global Awards – Sustainability (2019), Energy (2017), Energy & Resource-poor Tech (2016)

    • 🏆 Finalist, IChemE Awards – Core Chemical Engineering & Sustainable Tech (2011)

    • 🧠 Brian Mercer Feasibility Award, The Royal Society (£30,000, 2011/2012)

    • 🎓 “Young Alumni Award” – University College of Science and Technology, India (2003)

    • ⚗️ Research Fellowship – University Grants Commission, India (1992–1996)

    • 🥇 Winner – IChemE Fluid Separation Processes Group (1998)

    • 🏆 Salters’ Graduate Award for student research projects (2023, 2024)

    • 🏅 Multiple best poster awards for PhD students (2019–2020)

Publications & Citations 📚

  • Title: Surface modification and characterisation of a coal-based activated carbon
    Authors: P. Chingombe, B. Saha, R.J. Wakeman
    Journal: Carbon, Vol. 43(15), pp. 3132–3143
    Citations: 913
    Year: 2005

  • Title: Heterogeneous catalysed esterification of acetic acid with isoamyl alcohol: kinetic studies
    Authors: H.T.R. Teo, B. Saha
    Journal: Journal of Catalysis, Vol. 228(1), pp. 174–182
    Citations: 259
    Year: 2004

  • Title: Sorption of atrazine on conventional and surface modified activated carbons
    Authors: P. Chingombe, B. Saha, R.J. Wakeman
    Journal: Journal of Colloid and Interface Science, Vol. 302(2), pp. 408–416
    Citations: 258
    Year: 2006

  • Title: Sorption of Cr (VI) from aqueous solution by Amberlite XAD-7 resin impregnated with Aliquat 336
    Authors: B. Saha, R.J. Gill, D.G. Bailey, N. Kabay, M. Arda
    Journal: Reactive and Functional Polymers, Vol. 60, pp. 223–244
    Citations: 183
    Year: 2004

  • Title: Recent insights into lignocellulosic biomass pyrolysis: A critical review on pretreatment, characterization, and products upgrading
    Authors: Z.E. Zadeh, A. Abdulkhani, O. Aboelazayem, B. Saha
    Journal: Processes, Vol. 8(7), Article 799
    Citations: 179
    Year: 2020

  • Title: Recovery of dilute acetic acid through esterification in a reactive distillation column
    Authors: B. Saha, S.P. Chopade, S.M. Mahajani
    Journal: Catalysis Today, Vol. 60(1–2), pp. 147–157
    Citations: 174
    Year: 2000

  • Title: Removal of Cr (VI) by solvent impregnated resins (SIR) containing aliquat 336
    Authors: N. Kabay, M. Arda, B. Saha, M. Streat
    Journal: Reactive and Functional Polymers, Vol. 54(1–3), pp. 103–115
    Citations: 173
    Year: 2003

  • Title: Greener synthesis of dimethyl carbonate using a novel ceria–zirconia oxide/graphene nanocomposite catalyst
    Authors: R. Saada, S. Kellici, T. Heil, D. Morgan, B. Saha
    Journal: Applied Catalysis B: Environmental, Vol. 168, pp. 353–362
    Citations: 159
    Year: 2015

  • Title: Effect of surface modification of an engineered activated carbon on the sorption of 2,4-dichlorophenoxy acetic acid and benazolin from water
    Authors: P. Chingombe, B. Saha, R.J. Wakeman
    Journal: Journal of Colloid and Interface Science, Vol. 297(2), pp. 434–442
    Citations: 153
    Year: 2006

  • Title: Causes and consequences of thermal runaway incidents—Will they ever be avoided?
    Authors: R. Saada, D. Patel, B. Saha
    Journal: Process Safety and Environmental Protection, Vol. 97, pp. 109–115
    Citations: 142
    Year: 2015

  • Title: A single rapid route for the synthesis of reduced graphene oxide with antibacterial activities
    Authors: S. Kellici, J. Acord, J. Ball, H.S. Reehal, D. Morgan, B. Saha
    Journal: RSC Advances, Vol. 4(29), pp. 14858–14861
    Citations: 129
    Year: 2014

  • Title: Biodiesel production from waste cooking oil via supercritical methanol: Optimisation and reactor simulation
    Authors: O. Aboelazayem, M. Gadalla, B. Saha
    Journal: Renewable Energy, Vol. 124, pp. 144–154
    Citations: 125
    Year: 2018

  • Title: Sorption of trace heavy metals by thiol containing chelating resins
    Authors: B. Saha, M. Iglesias, I.W. Dimming, M. Streat
    Journal: Solvent Extraction and Ion Exchange, Vol. 18(1), pp. 133–167
    Citations: 122
    Year: 2000

🔍 Conclusion:

Professor Saha is a visionary and prolific researcher whose work significantly contributes to solving today’s environmental and energy challenges. His global collaborations, outstanding publication and citation record, successful grant leadership, and transformative research in green chemical technologies establish him as an exemplary candidate for the Best Researcher Award 🥇. His career reflects not only academic distinction but also societal impact, making him an ideal recipient of this honour.