Jiong Zhou | Supramolecular Chemistry | Best Researcher Award

Prof. Jiong Zhou | Supramolecular Chemistry | Best Researcher Award

Professor| Northeastern University | China

Dr. Jiong Zhou,  in Hubei, China, is a Professor and doctoral supervisor at the Department of Chemistry, Northeastern University, Shenyang. He obtained his PhD from Zhejiang University under the mentorship of Prof. Feihe Huang and pursued postdoctoral research with Prof. Timothy R. Cook at the University at Buffalo, SUNY. His academic journey includes a visiting scholar position at the same institution between .  Dr. Zhou embarked on his independent career as a professor, focusing on responsive self-assembly, supramolecular coordination complexes, and functional materials derived from host–guest chemistry. He has published more than 46 papers in supramolecular chemistry, attracting over 2800 citations, and serves on multiple editorial boards for leading journals. His scientific contributions have been recognized through prestigious awards, including the Chu Kochen Award and fellowships from international organizations. Today, he continues advancing supramolecular chemistry with innovation and global collaborations

Professional Profile

Dr. Jiong Zhou’s academic foundation reflects a strong commitment to chemistry and materials science. He earned his Bachelor’s degree in Polymer Materials and Engineering  from Anhui University under the guidance of Prof. Ru Xia. Building on this, he pursued doctoral studies in Chemistry at Zhejiang University, where he trained under Prof. Feihe Huang, a leading figure in supramolecular chemistry. His PhD, completed in concentrated on molecular self-assembly, host–guest interactions, and functional supramolecular systems. During his doctoral program, he broadened his international exposure as a visiting student at the University at Buffalo, SUNY, working in Prof. Timothy R. Cook’s research group. This experience reinforced his expertise in supramolecular coordination chemistry and interdisciplinary approaches. His formal education provided both theoretical and experimental grounding, equipping him with advanced skills in organic, polymer, and supramolecular chemistry, laying the foundation for his distinguished research career

Experience 

Dr. Zhou’s professional experience combines advanced research, teaching, and mentorship. Following the completion of his PhD, he joined the University at Buffalo, SUNY, as a Postdoctoral Associate in Prof. Timothy R. Cook’s laboratory, focusing on supramolecular assemblies and functional materials. Earlier, during his doctoral studies, he had served as a visiting scholar in the same group, enhancing his international research collaborations. Dr. Zhou began his independent academic career as a Professor in the Department of Chemistry at Northeastern University, where he supervises doctoral students and leads multiple funded projects. His experience spans authoring highly cited publications, presenting invited talks worldwide, and contributing to journal editorial boards. Beyond research, he has taught courses such as Organic Chemistry, Supramolecular Chemistry, and Organic Chemistry Experiments. His professional journey demonstrates a balance of cutting-edge research, impactful publications, teaching excellence, and leadership in chemical sciences

Professional Development

Dr. Zhou has actively pursued professional development through international collaborations, editorial leadership, and participation in scientific forums. He has served as Guest Editor for Molecules and is a Young Editorial Board member for numerous journals, including Exploration, VIEW, Asian Journal of Pharmaceutical Sciences, and Aging and Disease. He is also a reviewer for leading chemistry journals and contributes to advisory panels for Molecules and Polymers. His global presence includes invited talks at prestigious institutions such as the University of Cambridge, University of Manchester, and University of Liverpool, as well as conferences like the American Advanced Materials Congress. Dr. Zhou is also engaged in mentoring, having supervised PhD, master’s, and undergraduate students, guiding them in independent research. He continuously refines his expertise through international academic exchanges, keynote lectures, and professional committee involvement. His development reflects a dedication to leadership, innovation, and advancing the field of supramolecular chemistry

Skills & Expertise

Dr. Jiong Zhou possesses extensive expertise in supramolecular chemistry, functional materials, and molecular self-assembly. His core skills include the design and synthesis of macrocyclic compounds, exploration of host–guest chemistry, and development of supramolecular coordination complexes for practical applications. He is proficient in employing advanced analytical techniques for structural characterization and has experience in applied areas such as nanomedicine, cancer therapy, and molecular recognition. Beyond laboratory expertise, Dr. Zhou excels in academic publishing, having authored 46 scientific papers with significant global impact. His teaching skills are demonstrated through courses in Organic Chemistry and Supramolecular Chemistry, blending foundational knowledge with emerging research. He is also skilled in mentoring students, guiding them through independent projects and thesis development. Additionally, his editorial contributions highlight his critical review skills and commitment to shaping scientific literature. Overall, Dr. Zhou’s expertise lies at the intersection of supramolecular science, materials innovation, and interdisciplinary applications

Resarch Focus

Dr. Zhou’s research is centered on supramolecular chemistry, particularly responsive self-assembly, supramolecular coordination complexes, and functional host–guest systems. His work explores the design of novel macrocyclic hosts, including pillararene derivatives and hybrid[n]arenes, which can serve as versatile building blocks for advanced materials. A key focus is the development of supramolecular polymers and nanostructures for biomedical applications, including cancer therapy, drug delivery, and theranostics. His studies also extend to nonporous adaptive crystals, offering innovative solutions for molecular separations and environmental applications. By combining molecular design with functional material development, his research aims to address pressing global challenges in healthcare, sustainability, and energy. Supported by competitive funding projects, Dr. Zhou’s research integrates experimental chemistry with molecular simulations, bridging theory and application. His vision is to push the boundaries of supramolecular systems toward smart, responsive materials with transformative impacts across interdisciplinary fields of science and technology

Awards & Recognitions

Dr. Jiong Zhou has received numerous awards and honors recognizing his academic excellence and research impact. Early in his career, he earned the Chu Kochen Award , the highest honor of Zhejiang University, along with multiple Excellent Graduate and Innovation Awards. His doctoral achievements were also recognized with the Zhejiang University and Zhejiang Province Excellent Graduate Awards . Upon transitioning to his independent career, he was named Innovation Leader in Shenyang City and was selected for the Outstanding Young Scholars Training Program at Northeastern University. His international recognition includes being elected a Fellow of the International Association of Advanced Materials and receiving the Vebleo Fellowship . He has also guided students to prestigious awards, such as Outstanding Graduation Thesis recognition at Northeastern University. These accolades reflect his dedication to pioneering research, mentorship, and global scientific leadership, reinforcing his reputation as a rising scholar in supramolecular chemistry

Publication Top Notes

In conclusion, Dr. Jiong Zhou is highly suitable for the Best Researcher Award. His strong academic foundation, prolific publication record, impactful research contributions, and global recognition position him as a leading figure in supramolecular chemistry. While there is room to expand in translational applications and global collaborations, his trajectory shows consistent growth, innovation, and leadership. He embodies the qualities of an outstanding researcher, making him a highly deserving candidate for this prestigious award.

Eduardo González-Zamora | Multicomponent Reactions | Best Researcher Award

Prof. Dr. Eduardo González-Zamora | Multicomponent Reactions | Best Researcher Award

Professor at Universidad Autónoma Metropolitana, campus Iztapalapa , Mexico.

Dr. Eduardo González-Zamora 👨‍🔬 is a full professor at Universidad Autónoma Metropolitana-Iztapalapa (UAM-I) 🇲🇽. With a passion for chemistry 🧪, he earned his MSc from UAM-I in 1988 🎓. He completed his PhD in 1998 at Paris XI University 🇫🇷, under Prof. R. Beugelmans. He further enriched his experience with postdoctoral roles in UNAM 🇲🇽 and CNRS 🇫🇷, and served as a visiting professor at UCLA 🇺🇸 in 2011. His scientific journey is driven by innovation in polyheterocycle synthesis, peptide and total synthesis, and MOF chemistry 🔬. His global academic path reflects a commitment to excellence 🌍.

PROFILE 

ORCID 

GOOGLE SCHOLAR 

🔍 Summary of Suitability:

Dr. Eduardo González-Zamora exemplifies academic excellence, innovation, and international collaboration in the field of organic chemistry 🧪. His journey spans over three decades of impactful research, teaching, and mentorship. With advanced degrees from prestigious institutions in Mexico 🇲🇽 and France 🇫🇷, and postdoctoral research in top-tier global labs—including CNRS and UCLA 🇺🇸—he has developed a strong international presence and research footprint. His role as a full professor at UAM-I further highlights his leadership in the scientific community.

🎓 Education & Experience 

  • 🎓 MSc in Chemistry, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), 1988

  • 🎓 PhD in Chemistry, Paris XI University, France, 1998

  • 🧪 Postdoc at Instituto de Química, UNAM, Mexico (under Prof. R. Cruz)

  • 🔬 Postdoc at Institut de Chimie des Substances Naturelles, CNRS, France (with Prof. J. Zhu)

  • 👨‍🏫 Visiting Professor, UCLA (M.A. Garcia-Garibay’s group), USA, 2011

  • 👨‍🔬 Full Professor, Department of Chemistry, UAM-I, Mexico

Professional Development 🚀📖

Dr. González-Zamora’s professional development reflects a dynamic trajectory across prestigious global institutions 🌐. After solid foundations in Mexico 🇲🇽, he expanded his research horizons in France 🇫🇷 through advanced studies and postdoctoral work, gaining invaluable experience in synthetic chemistry 🧬. His role at UCLA 🇺🇸 as a visiting professor further enriched his international profile. As a full professor at UAM-I, he actively mentors students, leads innovative projects, and contributes to academic and scientific communities 📚. His development is marked by continual learning, collaboration, and leadership in research 🔍, teaching 📖, and international scientific networking 🤝.

Research Focus 🔍🤖

Dr. González-Zamora’s research is centered on organic synthesis with a focus on constructing complex molecular architectures 🧪. He specializes in the synthesis of polyheterocycles via multicomponent reactions (MCRs) ⚗️, contributing significantly to advances in heterocyclic chemistry. His work also spans peptide synthesis 🧬 and total synthesis strategies, aiming at efficient and innovative molecular assembly. Furthermore, he explores Metal-Organic Frameworks (MOFs) for potential applications in catalysis and material science 🧱. His research is driven by curiosity, creativity, and interdisciplinary integration, making significant impacts in both theoretical understanding and practical applications 🔍.

Publications & Citations 📚

Synthesis of polyheterocycles via multicomponent reactions, IA Ibarra, A Islas-Jácome, E González-Zamora, Organic & Biomolecular Chemistry 16 (9), 1402-1418, 243, 2018
MOF Materials for the Capture of Highly Toxic H₂S and SO₂, E Martínez-Ahumada, A López-Olvera, V Jancik, JE Sánchez-Bautista, …, Organometallics 39 (7), 883-915, 168, 2020
Structure stability of HKUST-1 towards water and ethanol and their effect on its CO₂ capture properties, JR Álvarez, E Sánchez-González, E Pérez, E Schneider-Revueltas, …, Dalton Transactions 46 (28), 9192-9200, 133, 2017
CO₂ capture under humid conditions in metal–organic frameworks, E González-Zamora, IA Ibarra, Materials Chemistry Frontiers 1 (8), 1471-1484, 122, 2017
Highly reversible sorption of H₂S and CO₂ by an environmentally friendly Mg-based MOF, E Sánchez-González, PGM Mileo, M Sagastuy-Breña, JR Álvarez, …, Journal of Materials Chemistry A 6 (35), 16900-16909, 100, 2018
High and energy-efficient reversible SO₂ uptake by a robust Sc(III)-based MOF, JA Zárate, E Sánchez-González, DR Williams, E González-Zamora, …, Journal of Materials Chemistry A 7 (26), 15580-15584, 86, 2019
Catalytic activity of HKUST-1 in the oxidation of trans-ferulic acid to vanillin, R Yepez, S García, P Schachat, M Sánchez-Sánchez, …, New Journal of Chemistry 39 (7), 5112-5115, 86, 2015
Greener synthesis of Cu-MOF-74 and its catalytic use for the generation of vanillin, JG Flores, E Sánchez-González, A Gutiérrez-Alejandre, J Aguilar-Pliego, …, Dalton Transactions 47 (13), 4639-4645, 85, 2018
Wilkinson’s catalyst catalyzed selective hydrogenation of olefin in the presence of an aromatic nitro function: a remarkable solvent effect, A Jourdant, E González-Zamora, J Zhu, The Journal of Organic Chemistry 67 (9), 3163-3164, 83, 2002
The Ugi three-component and its variants, JC Flores-Reyes, A Islas-Jácome, E González-Zamora, Organic Chemistry Frontiers 8 (19), 5460-5515, 81, 2021
Outstanding reversible H₂S capture by an Al(III)-based MOF, JA Zárate, E Sánchez-González, T Jurado-Vázquez, …, Chemical Communications 55 (21), 3049-3052, 77, 2019
Multicomponent domino process to oxa-bridged polyheterocycles and pyrrolopyridines, structural diversity derived from work-up procedure, R Gámez-Montaño, E González-Zamora, P Potier, J Zhu, Tetrahedron 58 (32), 6351-6358, 74, 2002

🔍 Conclusion:

Dr. Eduardo González-Zamora’s consistent, high-impact contributions to synthetic and materials chemistry make him an exceptional choice for the Best Researcher Award. His innovative research, mentorship, and global collaborations have left a profound mark on the field. His career is a testament to academic rigor, scientific curiosity, and international cooperation—core values that embody what this award stands for. 🥇

 

 

Shengnan Yuan | bimetal composite | Best Researcher Award

Ms. Shengnan Yuan | bimetal composite | Best Researcher Award

PhD student University of Wollongong at Australia.

Ms. Shengnan Yuan is a PhD student at the University of Wollongong, Australia, specializing in bimetal composites. Her research focuses on advanced materials engineering, contributing to the development of high-performance composite materials. Her outstanding work in the field has earned her the Best Researcher Award. 

Publication Profile:
Education 🎓

Shengnan Yuan holds a Ph.D. in Engineering from the University of Wollongong, Australia, where she specializes in bimetal composites, focusing on their mechanical properties, tribology, and formability. She also earned a Master of Research (First-Class) from the same institution and a Bachelor’s degree in Vehicle Engineering from Taiyuan University of Science and Technology.

Professional Experience 💼

With extensive experience in academia and industry collaborations, Yuan has worked on microstructure-property relationships, tribological performance optimization, and bimetal composite engineering. She has been actively engaged in technical writing, tutoring, and international research collaborations, contributing significantly to her field.

Research Focus 🧪🔬

Yuan’s research centers on bimetal composite design and engineering, particularly in optimizing their wear resistance and mechanical stability. Her Ph.D. work on Mn8/SS400 bimetal composites has led to significant advancements in annealing conditions and deformation behavior. She has also contributed to predictive modeling and tribological performance enhancements, with publications in renowned journals like Tribology International and Advanced Manufacturing Technology.

Awards and Honors 🏆

Shengnan Yuan possesses expertise in bimetal composite engineering, tribology, mechanical testing, and microstructural analysis. She has demonstrated proficiency in technical writing, academic publishing, and research collaborations. Her work on abrasive impact wear behavior has resulted in materials with 2.8 times higher wear resistance than conventional steels, showcasing her ability to drive innovation in material science.

Publications 📚

  1. Title: Deformation and Fracture Behaviour of Heterostructure Mn8/SS400 Bimetal Composite Materials

    • Publication Type: Journal Article
    • DOI: 10.3390/ma18040758
    • Year: 2025
    • Authors: Shengnan Yuan, Cunlong Zhou, Haibo Xie, Mengyuan Ren, Fei Lin, Xiaojun Liang, Xing Zhao, Hongbin Li, Sihai Jiao, Zhengyi Jiang
    • Source: Crossref
  2. Title: Analysis of Abrasive Impact Wear of the Mn8/SS400 Bimetal Composite Using a Newly Designed Wear Testing Rig

    • Publication Type: Journal Article
    • DOI: 10.1007/s00170-024-14310-3
    • Year: 2024 (September)
    • Authors: Shengnan Yuan, Hui Wu, Haibo Xie, Fanghui Jia, Xiaojun Liang, Xing Zhao, Sihai Jiao, Hongqiang Liu, Li Sun, Hongwei Cao, et al.
    • Source: The International Journal of Advanced Manufacturing Technology
  3. Title: Analysis of Abrasive Impact Wear of a Bimetal Composite Using a Newly Designed Wear Testing Rig

    • Publication Type: Preprint
    • DOI: 10.21203/rs.3.rs-4266907/v1
    • Year: 2024 (May 2)
    • Authors: Shengnan Yuan, Hui Wu, Haibo Xie, Fanghui Jia, Xiaojun Liang, Xing Zhao, Sihai Jiao, Zhengyi Jiang
    • Source: Crossref

 

Conclusion ✨ 

Based on her achievements and ongoing research contributions, Shengnan Yuan is a strong contender for the Best Researcher Award. Her expertise in materials science, tribology, and mechanical engineering aligns well with the award criteria, and with continued advancements in research output and collaborations, she can further establish herself as a leading scientist in her field.

 

 

 

 

HALİT KANTEKİN | Supramolecular Chemistry | International Chemistry Award

Prof. HALİT KANTEKİN | Supramolecular Chemistry | International Chemistry Award

Professor in Karadeniz Technical University at Turkey.

Prof. Dr. Halit Kantekin is a distinguished professor at Karadeniz Technical University, Turkey, specializing in Supramolecular Chemistry. His research focuses on molecular recognition, self-assembly, and functional materials. Recognized internationally for his contributions to the field, he has received the International Chemistry Award for his groundbreaking work.

Publication Profile:

Education 🎓

Prof. Dr. Halit Kantekin earned his Doctorate in Chemistry from Karadeniz Technical University (KTU), Turkey, in 1996, focusing on the synthesis and characterization of novel di-oxime and trinuclear complexes. He also completed his Postgraduate (1987-1989) and Undergraduate (1983-1987) studies in Chemistry at KTU.

Professional Experience 💼

Prof. Kantekin has had a long and distinguished career at Karadeniz Technical University, where he has been serving as a Professor of Chemistry since 2006. Prior to this, he held positions as Associate Professor (2000-2006), Assistant Professor (1998-2000), and Lecturer PhD (1997-1998). Additionally, he served in several administrative roles, including Dean of the Faculty of Science (2016-2020) and University Executive Board Member (2016-2020).

Research Focus 🧪🔬

His research is primarily in Supramolecular Chemistry, with a strong emphasis on Inorganic Chemistry, Transition Metals, Inorganic Ring Compounds, Coordination Chemistry, Organometallic Chemistry, Catalysis, and Novel Ligands. He has extensively studied the synthesis and photophysical properties of phthalocyanine derivatives, contributing to fields such as catalysis, electrochemistry, and photodynamic therapy for cancer treatment.

 

Awards and Honors 🏆

  • Synthesis & Characterization of inorganic and organometallic compounds
  • Supramolecular & Coordination Chemistry
  • Catalysis & Electrochemistry
  • Photophysical & Photochemical Analysis
  • Photodynamic Therapy Applications
  • Academic Leadership & Mentorship

Publications 📚
  1. Title: Solvent and central metal effects on the photophysical and photochemical properties of 4-benzyloxybenzoxy substituted phthalocyanines
    Authors: ET Saka, M Durmuş, H Kantekin
    Journal: Journal of Organometallic Chemistry
    Volume (Issue): 696 (4)
    Pages: 913-924
    Citations: 112
    Year: 2011

  2. Title: Tetra-2-[2-(dimethylamino) ethoxy] ethoxy substituted zinc phthalocyanines and their quaternized analogues: synthesis, characterization, photophysical and photochemical properties
    Authors: Z Bıyıklıoğlu, M Durmuş, H Kantekin
    Journal: Journal of Photochemistry and Photobiology A: Chemistry
    Volume (Issue): 222 (1)
    Pages: 87-96
    Citations: 80
    Year: 2011

  3. Title: Photophysical, photochemical and aggregation behavior of novel peripherally tetra-substituted phthalocyanine derivatives
    Authors: ET Saka, C Göl, M Durmuş, H Kantekin, Z Bıyıklıoğlu
    Journal: Journal of Photochemistry and Photobiology A: Chemistry
    Volume: 241
    Pages: 67-78
    Citations: 70
    Year: 2012

  4. Title: Amphiphilic zinc phthalocyanine photosensitizers: synthesis, photophysicochemical properties and in vitro studies for photodynamic therapy
    Authors: D Çakır, M Göksel, V Çakır, M Durmuş, Z Biyiklioglu, H Kantekin
    Journal: Dalton Transactions
    Volume (Issue): 44 (20)
    Pages: 9646-9658
    Citations: 67
    Year: 2015

  5. Title: Synthesis, photophysical and photochemical properties of quinoline substituted zinc (II) phthalocyanines and their quaternized derivatives
    Authors: Z Bıyıklıoğlu, M Durmuş, H Kantekin
    Journal: Journal of Photochemistry and Photobiology A: Chemistry
    Volume (Issue): 211 (1)
    Pages: 32-41
    Citations: 59
    Year: 2010

  6. Title: New soluble peripherally tetra-substituted Co (II), Fe (II) phthalocyanines: Synthesis, spectroscopic characterization and their catalytic activity in cyclohexene oxidation
    Authors: ET Saka, D Çakır, Z Bıyıklıoğlu, H Kantekin
    Journal: Dyes and Pigments
    Volume (Issue): 98 (2)
    Pages: 255-262
    Citations: 58
    Year: 2013

  7. Title: A Novel vic‐Dioxime with Crown Ether Moieties
    Authors: YŞ Gök, H Kantekin
    Journal: Chemische Berichte
    Volume (Issue): 123 (7)
    Pages: 1479-1480
    Citations: 58
    Year: 1990

  8. Title: The synthesis, using microwave irradiation and characterization of novel, organosoluble metal-free and metallophthalocyanines substituted with flexible crown ether moieties
    Authors: Z Biyiklioğlu, H Kantekin
    Journal: Dyes and Pigments
    Volume (Issue): 80 (1)
    Pages: 17-21
    Citations: 57
    Year: 2009

  9. Title: Novel water soluble morpholine substituted Zn (II) phthalocyanine: Synthesis, characterization, DNA/BSA binding, DNA photocleavage and topoisomerase I inhibition
    Authors: B Barut, Ü Demirbaş, A Özel, H Kantekin
    Journal: International Journal of Biological Macromolecules
    Volume: 105
    Pages: 499-508
    Citations: 54
    Year: 2017

  10. Title: Synthesis, electrochemical, in situ spectroelectrochemical and in situ electrocolorimetric characterization of new metal-free and metallophthalocyanines substituted with 4-{2 …
    Authors: I Acar, Z Bıyıklıoğlu, A Koca, H Kantekin
    Journal: Polyhedron
    Volume (Issue): 29 (5)
    Pages: 1475-1484
    Citations: 53
    Year: 2010

  11. Title: Synthesis, photophysical and photochemical properties of crown ether substituted zinc phthalocyanines
    Authors: M Durmuş, Z Bıyıklıoğlu, H Kantekin
    Journal: Synthetic Metals
    Volume (Issue): 159 (15-16)
    Pages: 1563-1571
    Citations: 53
    Year: 2009

  12. Title: New water soluble cationic zinc phthalocyanines as potential for photodynamic therapy of cancer
    Authors: D Çakır, V Çakır, Z Bıyıklıoğlu, M Durmuş, H Kantekin
    Journal: Journal of Organometallic Chemistry
    Volume: 745
    Pages: 423-431
    Citations: 51
    Year: 2013

  13. Title: Synthesis, characterization and comparative studies on the photophysical and photochemical properties of peripherally and non-peripherally tetra-substituted zinc (II) …
    Authors: I Acar, Z Bıyıklıoğlu, M Durmuş, H Kantekin
    Journal: Journal of Organometallic Chemistry
    Volume: 708
    Pages: 65-74
    Citations: 51
    Year: 2012

  14. Title: The synthesis and characterization of novel dioximes and their heteronuclear complexes containing crown ether moieties
    Authors: Y Gok, H Kantekin, I Degirmencioglu
    Journal: Polyhedron
    Volume (Issue): 12 (17)
    Pages: 2097-2104
    Citations: 50
    Year: 1993

  15. Title: The synthesis and characterization of new (E, E)-dioxime and its mono and heteronuclear complexes containing 14-membered tetraaza macrocyclic moiety
    Authors: Y Gök, H Kantekin
    Journal: Polyhedron
    Volume (Issue): 16 (14)
    Pages: 2413-2420
    Citations: 49
    Year: 1997

  16. Title: Microwave-assisted synthesis and characterization of novel metal-free and metallophthalocyanines containing four 14-membered tetraaza macrocycles
    Authors: Z Bıyıklıoğlu, H Kantekin, M Özil
    Journal: Journal of Organometallic Chemistry
    Volume (Issue): 692 (12)
    Pages: 2436-2440
    Citations: 48
    Year: 2007

  17. Title: Synthesis and characterization of new metal-free and metallophthalocyanines substituted with tetrathiadiazamacrobicyclic moieties
    Authors: Y Gök, H Kantekin, İ Değirmencioğlu
    Journal: Supramolecular Chemistry
    Volume (Issue): 15 (5)
    Pages: 335-343
    Citations: 47
    Year: 2003

  18. Title: Synthesis and characterization of new (E, E)-dioximes and their BF2+-capped mononuclear and trinuclear complexes with Ni (II), Pd (II) and Co (III)
    Authors: Y Gok, H Kantekin
    Journal: New Journal of Chemistry
    Volume (Issue): 19 (4)
    Citations: 46
    Year: 1995

 

Conclusion ✨ 

Prof. Halit Kantekin is a strong candidate for the International Chemistry Award due to his extensive research contributions, leadership, and impact in inorganic and photochemical sciences. Enhancing global collaborations and industry partnerships could further strengthen his profile.