Long Chen | inorganic nanomaterials | Best Researcher Award

Prof. Long Chen | inorganic nanomaterials | Best Researcher Award

Professor at Shihezi University in China.

 

Professor Long Chen 👨‍🔬 is a distinguished researcher at Shihezi University, College of Chemistry and Chemical Engineering. He earned his Ph.D. (2016) and M.S. (2014) from the University of Chinese Academy of Sciences, following a B.S. in Applied Chemistry from Shenyang University of Chemical Technology (2011). His expertise lies in advanced nanomaterials for electrochemical applications ⚡, including energy storage and catalysis. With multiple NSFC-funded projects, high-impact publications 🏆, and patents, he has significantly contributed to materials science. Recognized with prestigious awards 🏅, he also mentors young scientists, fostering innovation in sustainable energy solutions 🌱.

Professional Profile

Google Scholar

Scopus

🔍 Summary of Suitability:

Prof. Long Chen, a distinguished researcher at Shihezi University, has made significant contributions to materials chemistry, electrochemistry, and nanotechnology. His extensive research in energy storage, electrocatalysis, and water splitting has led to groundbreaking advancements in metal-organic frameworks, zinc-ion batteries, and nanomaterial-based sensors. With a strong publication record, leadership in national research projects, and recognition through patents and awards, he is a prime candidate for the Best Researcher Award.

Education 🎓

  • 2014-2016: Ph.D. in Materials Physics and Chemistry, University of Chinese Academy of Sciences 🏛️

  • 2011-2014: M.S. in Materials Physics and Chemistry, University of Chinese Academy of Sciences 🧪

  • 2007-2011: B.S. in Applied Chemistry, Shenyang University of Chemical Technology ⚗️

Work Experience 💼

  • 2023-Present: Professor, Shihezi University, College of Chemistry and Chemical Engineering 👨‍🏫

  • 2019-2023: Associate Professor, Shihezi University 🏫

  • 2016-2019: Lecturer, Shihezi University 📖

Postdoctoral Experience 🧑‍🔬

  • 2019-2023: Postdoctoral Researcher, Lanzhou University 🔬

Professional Development 🚀📖

Professor Long Chen 👨‍🏫 has made remarkable strides in materials science, focusing on electrochemical energy storage and catalysis ⚡. As a professor at Shihezi University, he has led multiple NSFC-funded projects, contributing to high-entropy materials and nanostructured catalysts 🏆. His prolific research output includes high-impact journal publications 📚, patents 🏅, and international conference presentations 🎤. With postdoctoral experience at Lanzhou University, he has expanded his expertise in advanced functional materials 🔬. Committed to mentoring young researchers 👨‍🎓, he continues to drive innovation in sustainable energy solutions 🌱, pushing the boundaries of electrochemical applications for a greener future.

Research Focus 🔍🤖

Professor Long Chen’s research focuses on electrochemical energy storage and conversion ⚡, nanomaterials 🔬, and catalysis ⚗️. His work explores high-entropy materials, metal-organic frameworks (MOFs), and defect-engineered nanostructures for applications in zinc-ion batteries, hydrogen evolution reactions (HER), and heavy metal ion detection 🔍. He specializes in designing advanced electrocatalysts for sustainable energy 🌱 and optimizing electrochemical interfaces to enhance efficiency. Through innovative materials synthesis 🏗️ and structural engineering, he develops next-generation battery electrodes 🔋 and catalytic systems for clean energy solutions, contributing to the progress of renewable energy technologies 🌍.

Awards & Honors 🏆

  • Second Prize in Natural Science, Xinjiang Production and Construction Corps 🏅 – 2024

  • Gold Award, China International College Students’ Innovation Competition 🥇 – 2024 (as the first mentor)

  • Outstanding Innovation and Entrepreneurship Mentor, Ministry of Education 🎓 – 2024

  • Keynote Speaker, International Conference on Sustainable Energy Development 🎤 – 2023

  • Best Presentation Award, Micro-Nano Materials and Interface Characterization Forum 🏆 – 2024

  • Multiple National Patents Holder 🏅 – Including advanced electrocatalysts & battery materials

  • Principal Investigator for NSFC Research Projects 🔬 – Secured major national funding for energy materials research

Publications & Citations 📚

  1. MOF-derived Zn/Co co-doped MnO/C microspheres for aqueous zinc-ion batteryChemical Engineering Journal, 2023, Cited by: 125 🔬📖

  2. MOF-derived Se doped MnS/Ti3C2Tx for rocking-chair zinc-ion batteryNano Research, 2024, Cited by: 89 ⚡🔋

  3. Highly stable Zn anodes with 3D zincophilic buffer layerNano Research Energy, 2024, Cited by: 76 🔋⚙️

  4. NiCo2O4 nanoparticles on graphene for heavy metal detectionChemical Engineering Journal, 2022, Cited by: 132 🏭⚡

  5. Cu8S5 decorated porous carbon for water splittingChemical Engineering Journal, 2022, Cited by: 110 💦⚡

  6. NiCo2S4 microspheres on graphene for water splittingNano Research, 2022, Cited by: 98 ⚛️💧

  7. Ultrafine MFe2O4 nanocrystals for Cu(ii) detectionJournal of Materials Chemistry A, 2021, Cited by: 145 🏗️🧪

  8. Ni3S2/Co9S8 hybrid nanostructures for water splittingJournal of Colloid and Interface Science, 2023, Cited by: 87 ⚛️🌊

  9. Zincophilic Ti3C2Cl2 MXene for dendrite-free Zn anodeJournal of Materials Science & Technology, 2024, Cited by: 92 🔋🧪

  10. High-capacity Ti3C2Tx MXene supercapacitorsACS Applied Materials & Interfaces, 2023, Cited by: 105 ⚡📊

Venkatesan Srinivasan| Nanomaterials | Young Scientist Award

Dr. Venkatesan Srinivasan| Nanomaterials | Young Scientist Award

Assistant Professor at Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technologyin India.

Dr. V. Srinivasan 🎓 is an Assistant Professor of Chemistry at Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India. His research focuses on the synthesis, characterization, and optimization of nanoprobes and small organic probes for applications in sensors, biological systems, and solar cells 🌞🧪. He has published 27 articles in reputed international journals, with a total impact factor of 106.9 📖✨. His work also includes the fabrication of dye-sensitized solar cells and the development of bioactive organic molecules. With 562 citations 📊 and an H-index of 13, Dr. Srinivasan is making significant contributions to photochemistry and nanomaterials research.

Professional Profile

🔍 Summary of Suitability:

Dr. V. Srinivasan is an ideal candidate for the Young Scientist Award due to his exceptional contributions to a, photochemistry, and energy research 🔬🌞. As an Assistant Professor, he has demonstrated remarkable scientific innovation, impactful research, and a strong commitment to advancing sustainable chemistry. His work focuses on fluorescent nanoprobes, bioactive molecules, and dye-sensitized solar cells, addressing critical challenges in biosensing, environmental monitoring, and renewable energy.

🎓 Education:

  • Ph.D. in Chemistry 🧪 – Specialized in nanomaterials and photochemistry.

  • Master’s in Chemistry (M.Sc.) 📚 – Advanced studies in chemical sciences.

  • Bachelor’s in Chemistry (B.Sc.) 🏫 – Foundation in fundamental chemistry concepts.

💼 Experience:

  • Assistant Professor 👨‍🏫 – Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai.

  • Researcher in Nanomaterials 🔬 – Expertise in synthesizing and characterizing nanoprobes for diverse applications.

  • Scientific Author ✍️ – Published 27 papers in international journals with an impact factor of 106.9.

  • Photochemistry Specialist 🌞 – Worked on dye-sensitized solar cells and organic sensitizers for improved efficiency.

  • Reviewer & Collaborator 🤝 – Engaged in 5 research collaborations and contributed to journal revisions.

 

Professional Development 🚀📖

Dr. V. Srinivasan 🎓 has continuously enhanced his expertise through extensive research and collaborations 🤝. As an Assistant Professor 👨‍🏫, he has contributed to the advancement of nanoprobes, bioactive molecules, and photochemistry 🌞. His professional growth includes publishing 27 high-impact journal articles 📖, achieving an H-index of 13 📊, and securing 562 research citations. He actively engages in interdisciplinary collaborations, refining innovative methodologies in nanotechnology 🔬. A dedicated member of IAENG (504612) 🏅, he stays updated with emerging trends. His work in fluorescent nanomhttps://chemicalscientists.com/venkatesan-srinivasan-nanomaterials-young-scientist-award-2180/aterials and solar energy conversion reflects his commitment to scientific innovation and sustainability 🌱.

Research Focus 🔍🤖

Dr. V. Srinivasan’s research revolves around nanomaterials and photochemistry 🔬🌞, focusing on the synthesis and characterization of fluorescent nanoprobes for applications in biosensors, solar cells, and environmental monitoring 🧪🌍. His work includes developing aggregation-induced emissive (AIE) nanodots for bioimaging 🧬, graphene oxide dots (GO dots) for explosive detection 💥, and carbon nanocubes (CNCs) for antibiotic sensing 💊. Additionally, he explores dye-sensitized solar cells (DSSC) with novel organic sensitizers to enhance efficiency ⚡. His recent focus is on synthesizing bioactive organic molecules and nanomaterials for biomedical applications, making significant contributions to sustainable and innovative chemistry 🌱🧑‍🔬.

🏆 Awards & Honors:

  • Young Scientist Award Nominee 🏅 – Recognized for contributions in nanomaterials and photochemistry.

  • Published in High-Impact Journals 📖 – 27 research papers with a total impact factor of 106.9.

  • Research Citations Achievement 📊562 citations, H-index: 13, and i10-index: 14.

  • Active Research Collaborator 🤝 – Engaged in 5 interdisciplinary collaborations.

  • Professional Membership 🎓 – Member of IAENG (504612) for engineering and research excellence.

  • Expert Reviewer 📝 – Contributed to 23 journal revisions in reputed international publications.

Publication Top Notes:

📗 Green synthesis of zinc oxide nanoparticles using Brassica oleracea var. botrytis leaf extract: Photocatalytic, antimicrobial and larvicidal activity – 111 citations, 2023 (Chemosphere 323, 138263)

💡 Unravelling the effect of anchoring groups on the ground and excited state properties of pyrene using computational and spectroscopic methods – 58 citations, 2016 (PCCP 18(19), 13332-13345)

🔬 A simple and ubiquitous device for picric acid detection in latent fingerprints using carbon dots – 48 citations, 2020 (Analyst 145(13), 4532-4539)

🦠 Pyrene based Schiff bases: Synthesis, crystal structure, antibacterial and BSA binding studies – 46 citations, 2021 (JMS 1225, 129153)

♻️ Fuel waste to fluorescent carbon dots and its multifarious applications – 42 citations, 2019 (Sensors and Actuators B: Chemical 282, 972-983)

💠 Pyrene based D–π–A architectures: synthesis, density functional theory, photophysics and electron transfer dynamics – 38 citations, 2017 (PCCP 19(4), 3125-3135)

🌐 Nanostructured graphene oxide dots: synthesis, characterization, photoinduced electron transfer studies, and detection of explosives/biomolecules – 29 citations, 2018 (ACS Omega 3(8), 9096-9104)

🧬 Pyrene-based prospective biomaterial: In vitro bioimaging, protein binding studies and detection of bilirubin and Fe³⁺ – 28 citations, 2019 (SAA: Molecular and Biomolecular Spectroscopy 221, 117150)

✨ AIE nanodots obtained from a pyrene Schiff base and their applications – 28 citations, 2017 (ChemistrySelect 2(4), 1353-1359)

⚛️ A combined experimental and computational characterization of D–π–A dyes containing heterocyclic electron donors – 24 citations, 2017 (JPPB A: Chemistry 332, 453-464)

🔋 A diminutive modification in arylamine electron donors: Synthesis, photophysics and solvatochromic analysis–towards the understanding of dye-sensitized solar cell performances – 20 citations, 2015 (PCCP 17(43), 28647-28657)

🩺 Evaluation of the anti-rheumatic properties of thymol using carbon dots as nanocarriers on FCA induced arthritic rats – 15 citations, 2021 (Food & Function 12(11), 5038-5050)

🧪 Facile synthesis of carbon nanocubes and its applications for sensing antibiotics – 14 citations, 2020 (JPPB A: Chemistry 403, 112855)

🔦 Light induced behavior of xanthene dyes with benzyl viologen – 11 citations, 2014 (Synthetic Metals 196, 131-138)

🧬 Miniscule modification of coumarin-based potential biomaterials: Synthesis, characterization, computational and biological studies – 7 citations, 2023 (JPPB A: Chemistry 445, 115044)

🧑‍💻 Computational, reactivity, Fukui function, molecular docking, and spectroscopic studies of a novel (E)-1-Benzyl-3-(2-(Pyrindin-2-yl) Hydrazono) Indolin-2-One – 6 citations, 2024 (Polycyclic Aromatic Compounds 44(9), 6263-6283)

🧲 Synthesis, crystal structure and protein binding studies of a binuclear copper (I) complex with triphenylphosphine-based dithiocarbazate – 6 citations, 2023 (Inorganic Chemistry Communications 157, 111195)

⚗️ A fluorescent chemosensor for selective detection of chromium (III) ions in environmentally and biologically relevant samples – 4 citations, 2024 (SAA: Molecular and Biomolecular Spectroscopy 316, 124286)

🧪 A comprehensive investigation of ethyl 2-(3-methoxybenzyl) acrylate substituted pyrazolone analogue: Synthesis, computational and biological studies – 4 citations, 2024 (Chemical Physics Impact 8, 100531)

🌱 Biomass-derived potential nano-biomaterials: Protein binding, anti-biofilm activity and bio-imaging – 3 citations, 2024 (JMS 1300, 137155)

🎯 Conclusion:

Dr. V. Srinivasan’s research excellence, scientific impact, and innovative contributions make him highly deserving of the Young Scientist Award. His pioneering work in nanomaterials, biosensors, and renewable energy showcases his potential as a leading young researcher shaping the future of scientific advancements. 🚀🔬

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

silvana alfei | Nanomaterial | Award for Scientific Contributions in Chemistry

Prof. Dr. silvana alfei | Nanomaterial | Award for Scientific Contributions in Chemistry

Permanent researcher, lecturer of Organic Chemistry at University of Genoa in Italy.

🔬 Silvana Alfei is a professor and researcher in Organic Chemistry at the University of Genoa, Italy 🇮🇹. She holds a national scientific qualification and has served as a commissioner in the Department of Pharmacy. Since 2006, she has led the Organic Chemistry I course (CTF) and has previously taught Organic Chemistry (Pharmacy). Her research focuses on biodegradable dendrimers for nanomedicine, antibacterial and antitumor macromolecules, and nano-vesicles with therapeutic applications. 📚 With an H-index of 25, 111 publications, and over 1,998 citations, she actively contributes to high-impact journals and serves as an editor and reviewer in renowned scientific journals. ✨

Professional Profile

🔍 Summary of Suitability:

Silvana Alfei is a distinguished researcher in organic chemistry, with impactful contributions in nanomedicine, biodegradable dendrimers, and antibacterial and antitumor macromolecules. Her extensive publication record, editorial roles, and international collaborations make her a strong candidate for the Award for Scientific Contributions in Chemistry.

🎓 Education & Experience of Silvana Alfei

🎓 Education

  • Ph.D. in Organic Chemistry 🧪 – University of Genoa, Italy 🇮🇹

  • Master’s Degree in Chemistry 🏅 – University of Genoa, Italy

💼 Professional Experience

  • Professor & Researcher in Organic Chemistry 🔬 – University of Genoa

  • National Scientific Qualification (ASN) 🏆 – Recognized for second-tier professorship, meeting first-tier criteria

  • Commissioner 🏛️ – Department of Pharmacy, University of Genoa

  • Course Leader for Organic Chemistry I (CTF) 📖 – Since 2006

  • Former Course Leader for Organic Chemistry (Pharmacy) 🎓 – (2019-2021)

  • Guest Editor & Editorial Board Member 📚IJMS & Nanomaterials (MDPI)

  • Active Reviewer ✍️ – Conducted over 216 peer reviews

  • Academic Editor 🏅 – Contributed to high-impact scientific journals

 

Professional Development 🚀📖

Silvana Alfei has continuously expanded her expertise in organic chemistry 🧪 through research, teaching, and editorial roles. As a professor and researcher 🔬 at the University of Genoa, she has developed innovative biodegradable dendrimers for nanomedicine 🏥 and antibacterial and antitumor macromolecules. She actively contributes to the scientific community as a Guest Editor 📚 and Editorial Board Member for prestigious journals. With over 216 peer reviews ✅, she ensures research quality. Her collaborations with national and international 🌍 scientists enhance her contributions, making her a key figure in organic chemistry and pharmaceutical sciences. 🚀

Research Focus 🔍🤖

Silvana Alfei’s research revolves around organic chemistry 🧪 with applications in nanomedicine 🏥 and pharmaceutical sciences 💊. She specializes in the synthesis of biodegradable dendrimers 🌱 for drug delivery, antibacterial and antitumor macromolecules 🦠, and cationic polymers for biomedical and environmental use 🌍. Her work extends to crosslinked hydrogels 💧 and nano-vesicles with therapeutic effects. Through cutting-edge molecular design 🔬, she contributes to advanced drug formulations and targeted therapies. Her interdisciplinary research enhances biomedical applications, making significant strides in pharmaceutical innovation 🚀 and sustainable chemistry. ♻️

 

🏆 Awards & Honors of Silvana Alfei

  • National Scientific Qualification (ASN) – Second Tier 🎓🏅 (Meeting First-Tier Requirements)

  • Commissioner at the Department of Pharmacy, University of Genoa 🏛️

  • Editorial Board Member 📚International Journal of Molecular Sciences (IJMS) & Nanomaterials (MDPI)

  • Guest Editor of Special Issues ✍️ – High-impact scientific journals

  • Recognized Peer Reviewer ✅ – Over 216 scientific reviews for leading journals

  • International Collaborations 🌍 – Contributing to global research advancements in organic chemistry and nanomedicine

Publication Top Notes:

📘 Last Fifteen Years of Nanotechnology Application with Our Contribute – S. Alfei, G. Zuccari (❌ No citations, 📅 Year not available)

🧠 Ellagic Acid: A Green Multi-Target Weapon That Reduces Oxidative Stress and Inflammation to Prevent and Improve Alzheimer’s Disease – S. Alfei, G. Zuccari (🔢 1 citation, 📅 Year not available)

🧪 Pivotal Contribute of EPR-Characterized Persistent Free Radicals in the Methylene Blue Removal by a Bamboo-Based Biochar-Packed Column Flow System – F. Zanardi et al. (🔢 4 citations, 📅 2024)

🦠 Strongly ROS-Correlated, Time-Dependent, and Selective Antiproliferative Effects of Synthesized Nano Vesicles on BRAF Mutant Melanoma Cells and Their Hyaluronic Acid-Based Hydrogel Formulation – S. Alfei et al. (🔢 1 citation, 📅 2024)

🧬 The Remarkable and Selective In Vitro Cytotoxicity of Synthesized Bola-Amphiphilic Nanovesicles on Etoposide-Sensitive and -Resistant Neuroblastoma Cells – S. Alfei et al. (🔢 3 citations, 📅 2024)

🦠 Synthesized Bis-Triphenyl Phosphonium-Based Nano Vesicles Have Potent and Selective Antibacterial Effects on Several Clinically Relevant Superbugs – S. Alfei et al. (🔢 5 citations, 📅 2024)

⚡ Reactive Oxygen Species (ROS)-Mediated Antibacterial Oxidative Therapies: Available Methods to Generate ROS and a Novel Option Proposal – S. Alfei et al. (🔢 37 citations, 📅 Year not available)

💊 Attempts to Improve Lipophilic Drugs’ Solubility and Bioavailability: A Focus on Fenretinide – S. Alfei, G. Zuccari (🔢 5 citations, 📅 Year not available)

🩹 Synthesis and Physicochemical Characterization of Gelatine-Based Biodegradable Aerogel-like Composites as Possible Scaffolds for Regenerative Medicine – S. Alfei et al. (🔢 5 citations, 📅 2024)

🌱 Biochar-Derived Persistent Free Radicals: A Plethora of Environmental Applications in a Light and Shadows Scenario – S. Alfei, O. Ginoble Pandoli (🔢 8 citations, 📅 Year not available)

🎯 Conclusion:

Silvana Alfei’s innovative research, scientific leadership, and global contributions align perfectly with the Award for Scientific Contributions in Chemistry. Her dedication to advancing drug delivery systems, nanomedicine, and biomaterials makes her a highly deserving candidate for this recognition. 🏆✨