Tao Song | Physical Chemistry | Research Excellence Award

Mr. Tao Song | Physical Chemistry | Research Excellence Award

Assistant Professor | Hunan University of Technology | China

Mr. Tao Song is a researcher specializing in electrochemistry, functional organic materials, and surface engineering, with a particular focus on electroplating additives and structure–property relationships. The author has published 8 peer-reviewed research articles, receiving 30 citations with an h-index of 3, reflecting steady academic impact in applied electrochemical science. Research contributions include the design and characterization of imidazole-based and Schiff base derivatives for microvia copper electroplating, advancing performance control and process reliability. Collaborative work with 20 co-authors demonstrates strong interdisciplinary engagement across materials chemistry and electroanalysis. The research supports technological innovation in electronic manufacturing, contributing to improved efficiency, material utilization, and sustainable surface treatment processes with relevance to industrial and societal applications.

Citation Metrics (Scopus)

30
20
10
0

Citations

30

Documents

8

h-index

3

Citations

Documents

h-index

View Scopus ProfileView ORCID Profile

Featured Publications

Chang Soon Huh | Physical Chemistry | South Korea

Assist. Prof. Dr. Chang Soon Huh | Physical Chemistry | South Korea

Assistant Professor | Dong-Eui University | South Korea

Dr. Chang-soon Huh is an emerging researcher recognized for his growing contributions to analytical chemistry, biosensing technologies, and nanomaterial-assisted detection systems. With 13 peer-reviewed publications, 50 citations, and an h-index of 3, he demonstrates a steadily rising academic influence supported by methodologically robust and application-driven studies. His work integrates fluorescence spectroscopy, biomolecular recognition, and engineered nanomaterials to create rapid, sensitive, and cost-efficient diagnostic platforms capable of addressing contemporary analytical challenges. One of his notable achievements includes the development of a fluorescent detection strategy for alkaline phosphatase based on gold nanoclusters and p-nitrophenyl phosphate, underscoring his ability to connect fundamental chemical principles with practical biosensing innovation. His research portfolio highlights strong interdisciplinary collaboration, engaging co-authors across materials science, biotechnology, and chemical engineering, which enriches the scientific depth and applicability of his studies. These collaborations support novel advancements in high-sensitivity detection systems, enabling precise monitoring of biochemical reactions and contributing to improved diagnostic and environmental assessment methodologies. Beyond quantitative publication metrics, his work demonstrates broader societal relevance, particularly in areas requiring early disease detection, quality assurance in bioprocessing, and real-time analysis of biochemical pathways. His commitment to scientific rigor, innovation, and problem-solving positions him as a promising researcher with expanding influence in the global analytical science community. Through consistent scholarly output and an expanding citation record, Dr. Huh continues to advance impactful research that aligns with emerging needs in biosensing, nanotechnology, and chemical diagnostics.

Profiles : Scopus | ResearchGate

Featured Publications

Kim, S.-H., Huh, C.-S., & Kim, M.-M. (2025). Rapid and sensitive detection of alkaline phosphatase based on fluorescent gold nanoclusters and p-nitrophenyl phosphate. Journal of Bioscience and Bioengineering. Citations: 1

Lee, S. E., & Huh, C.-S. (2025). Application of smartphones to measurements of reducing power related to antioxidant activity. Journal of Analytical Chemistry.

Kim, G. H., Huh, C.-S., & Kim, M.-M. (2024). Development of a smartphone-based method for measuring the antioxidant efficacy of commercial beverages. Current Analytical Chemistry.

Talapphet, N., & Huh, C.-S. (2024). A smartphone colorimetric development with TMB/H₂O₂/HRP reaction system for hydrogen peroxide detection and its applications. Journal of Analytical Chemistry. Citations: 10

Talapphet, N., & Huh, C.-S. (2024). Development of gold nanocluster complex for the detection of tumor necrosis factor-alpha based on immunoassay. Journal of Immunological Methods. Citations: 4

Chang-soon Huh’s work advances analytical science through innovative biosensing and nanomaterial-based detection systems that improve accuracy, speed, and accessibility in chemical and biochemical analysis. His research supports global innovation in health diagnostics and contributes to practical technologies that strengthen scientific, industrial, and societal advancements.

Arul Pundi | Materials Chemistry | Chemical Scientist Award

Dr. Arul Pundi | Materials Chemistry | Chemical Scientist Award

Postdoctoral Research Fellow | Feng Chia University | Taiwan

Dr. Pundi Arul is an emerging early-career researcher at Feng Chia University, Taichung, Taiwan, contributing to advancing photocatalysis, polymer composites, and defect-engineered semiconductor materials. He has authored 14 peer-reviewed publications that have collectively received 328 citations, demonstrating the growing visibility and scientific influence of his work within the global materials science community, and his h-index of 10 underscores the impact of his research relative to his career stage. His primary research focus lies in the design, synthesis, and optimization of vacancy-engineered polymeric and graphitized carbon nitride photocatalysts, materials that hold significant promise for solar energy conversion, environmental remediation, and sustainable oxidation–reduction reactions. His recent comprehensive review on vacancy defects provides valuable mechanistic insights and offers strategic guidance for future photocatalyst development. Beyond defect engineering, Dr. Arul’s research interests encompass polymer science, nanomaterials, photocatalytic reaction pathways, and semiconductor modifications aimed at improving light absorption and charge-carrier dynamics. He frequently employs advanced characterization tools to probe structure–property relationships, contributing to more rational and efficient catalyst design. Collaboration is a key dimension of his scientific work, reflected in his co-authorship with 25 researchers across interdisciplinary and international projects, strengthening the depth and application potential of his studies in sustainable materials and green energy technologies. With research aligned toward global priorities in clean energy and environmental protection, Dr. Arul’s contributions support the development of next-generation photocatalytic systems capable of pollution mitigation and renewable energy harvesting. Through his expanding research trajectory, he continues to establish himself as a promising scientist in materials chemistry and photocatalytic science.

Profiles : Google Scholar | Scopus | ORCID

Featured Publications

Pundi, A., Chang, C. J., Chen, J., Hsieh, S. R., & Lee, M. C. (2021).A chiral carbazole based sensor for sequential “on-off-on” fluorescence detection of Fe³⁺ and tryptophan/histidine.
Sensors and Actuators B: Chemical, 328, 129084.Cited by: 95

Pundi, A., & Chang, C. J. (2022).Recent advances in synthesis, modification, characterization, and applications of carbon dots.Polymers, 14(11), 2153.Cited by: 67

Pundi, A., Chang, C. J., Chen, Y. S., Chen, J. K., Yeh, J. M., Zhuang, C. S., & Lee, M. C. (2021).An aniline trimer-based multifunctional sensor for colorimetric Fe³⁺, Cu²⁺ and Ag⁺ detection, and its complex for fluorescent sensing of L-tryptophan.Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 247, 119075.Cited by: 34

Reddy, P. M., Hsieh, S. R., Lee, M. C., Chang, C. J., Pundi, A., Chen, Y. S., Lu, C. H., & others. (2019).Aniline trimer based chemical sensor for dual responsive detection of hazardous CN¯ ions and pH changes.Dyes and Pigments, 164, 327–334. Cited by: 27

Pundi, A., & Chang, C. J. (2023).Recent developments in the preparation, characterization, and applications of chemosensors for environmental pollutants detection.Journal of Environmental Chemical Engineering, 11(5), 110346.Cited by: 25

Dr. Pundi Arul’s research advances next-generation sensing and photocatalytic materials, enabling cleaner environments, sustainable technologies, and high-precision analytical tools. His innovations contribute directly to global efforts in environmental protection, renewable energy, and advanced material design.

Chung-Yin | Supramolecular Chemistry | Best Researcher Award

Dr. Chung-Yin Lin | Supramolecular Chemistry | Best Researcher Award

Associated Principle Investigator | Chang Gung University | Taiwan

Dr. Chungyin Lin is a distinguished researcher whose work spans neuroscience, molecular biochemistry, and advanced diagnostic technologies, with a strong record of scientific influence demonstrated by 43 peer-reviewed publications and more than 1,817  citations. His research portfolio encompasses the molecular mechanisms underlying neurodegenerative disorders, with notable investigations into tau-related neuroinflammation, mitochondrial dysfunction, dysregulation of choline metabolism, and the therapeutic potential of bioactive compounds such as citicoline and kynurenic acid. Dr. Lin has also contributed significantly to translational diagnostic science through the development of paper-based molecularly imprinted sensing platforms designed for sensitive and accessible biomarker detection, reflecting a broader commitment to bridging biological insights with practical clinical tools. His publications in widely recognized journals highlight a sustained focus on disorders such as Huntington’s disease and Parkinson’s disease, where his findings support ongoing advancements in early diagnosis, therapeutic targeting, and neuroprotective intervention strategies. Dr. Lin’s work is further strengthened by extensive interdisciplinary collaboration, having co-authored studies with over 130 researchers from diverse scientific domains, including clinicians, pharmacologists, materials scientists, and biomedical engineers. These collaborations have accelerated progress in understanding disease-related biochemical pathways, developing innovative detection methods, and proposing new therapeutic hypotheses, thereby enhancing the societal and scientific impact of his research. With an h-index of 21, Dr. Lin continues to contribute meaningfully to global biomedical research through rigorous experimentation, integrative methodology, and a vision oriented toward improving human health through scientific innovation.

Featured Publications

Lin, T.-H., Tseng, P.-H., Chen, I.-C., & Chen, C.-M. (2025). The potential of mulberry (Morus alba L.) leaf extract against pro-aggregant Tau-mediated inflammation and mitochondrial dysfunction.

Lin, T.-C., Lin, C. Y., Hwang, Y.-T., & Tai, D.-F. (2025). Paper-based molecularly imprinted film designs for sensing human serum albumin.

Chang, K.-H., Cheng, M.-L., Tang, H.-Y., et al., & Chen, C.-M. (2024). Dysregulation of choline metabolism and therapeutic potential of citicoline in Huntington’s disease.

Chen, C.-M., Huang, C.-Y., Lai, C.-H., et al., & Lin, C. Y. (2024). Neuroprotection effects of kynurenic acid-loaded micelles for the Parkinson’s disease models.

Yang, P.-N., Chen, W.-L., Lee, J.-W., et al., & Lee-Chen, G.-J. (2023). Coumarin-chalcone hybrid LM-021 and indole derivative NC009-1 targeting inflammation and oxidative stress to protect BE(2)-M17 cells against α-synuclein toxicity.

Dr. Chungyin Lin’s research advances global understanding of neurodegeneration while driving innovative diagnostic and therapeutic strategies that address critical unmet needs in neurological health. His interdisciplinary work bridges molecular science, technology, and clinical application, contributing meaningful solutions that enhance healthcare outcomes and societal well-being.

Yanhe Han | Environmental Chemistry | Editorial Board Member

Prof. Yanhe Han | Environmental Chemistry | Editorial Board Member

Dean | Beijing Institute of Petrochemical Technology | China

Han Yanhe is a highly cited researcher known for influential contributions in environmental engineering, catalytic materials development, advanced oxidation processes, and innovative wastewater treatment technologies. With a substantial record of 68 peer-reviewed publications, over 1,602 citations, and an h-index of 20, Han has established a strong global research presence characterized by consistent scientific impact and extensive multidisciplinary engagement. His work spans the design of integrated nitrogen and sulfur removal systems, including synergistic approaches combining sulfate reduction, sulfur-autotrophic denitrification, and micro-electrolytic pathways to achieve efficient treatment of complex and sulfate-rich wastewaters. Han has advanced understanding of the mechanistic interplay between sulfur-based electron donors and iron–carbon micro-electrolysis, contributing engineering strategies that enhance pollutant degradation and support scalable, sustainable water-treatment solutions. In the field of catalysis, he has contributed to the development of high-performance materials such as CeO₂/GO-co-doped MoS₂ composites, improving electrocatalytic hydrogen evolution and offering practical, cost-effective alternatives to noble-metal-based systems. His research portfolio further encompasses low-temperature plasma-driven oxidation for the mitigation of pharmaceutical and personal-care contaminants, environmental impact assessments of analytical detection methods, and intensified micro-electrolysis techniques tailored for highly toxic industrial waste streams. With collaborations spanning over 140 co-authors, Han has demonstrated a strong commitment to interdisciplinary research and scientific integration across chemistry, materials science, and environmental systems engineering. Many of his publications continue to accumulate significant citations, underscoring the relevance and applicability of his findings to both academic research and industrial practice. Through a combination of mechanistic insight, engineering innovation, and sustainability-focused design, Han Yanhe’s body of work contributes substantially to global efforts aimed at advancing clean-water technologies, enhancing catalytic efficiency, reducing environmental burdens, and supporting sustainable chemical engineering practices.

Profiles : Scopus

Featured Pulications
  1. Han, Y., Xu, H., Zhang, L., Ma, X., Man, Y., Su, Z., & Wang, J. (2023). An internal circulation iron–carbon micro-electrolysis reactor for aniline wastewater treatment: Parameter optimization, degradation pathways and mechanism. Chinese Journal of Chemical Engineering, 63(11), 96–107.

  2. Han, Y., Zhang, S., Zhang, X., Wu, C., & An, R. (2020). Optimization of the conditions for degradation of hydrolyzed polyacrylamide using electro-coagulation. Desalination and Water Treatment, 179, 148–159.

  3. Han, Y., Zhang, S., Xiaofei, Z., & Chen, J. (2020). Electrochemical oxidation of Hydrolyzed Polyacrylamide (HPAM) at Ti/SnO₂-Sb₂O₃/β-PbO₂ anode: Degradation kinetics and mechanisms. International Journal of Electrochemical Science, 15(4), 3382–3399.

  4. Han, Y., Wang, H., Wei, M., … Ma, X. (2025). Advanced low-temperature plasma-driven oxidation for mitigating pharmaceutical and personal care products in wastewater: Mechanisms, influencing factors, and reactor configurations.

    Prof. Yanhe Han advances sustainable environmental engineering through innovative electrochemical and micro-electrolysis technologies for efficient pollutant removal. His work delivers practical solutions for industry while contributing to global efforts toward cleaner water systems and a healthier environment.

Moussa Ouakki | Electrochemistry | Best Researcher Award

Prof. Moussa Ouakki | Electrochemistry | Best Researcher Award

Ibn Tofail University| Morocco

Prof. Moussa Ouakki is a distinguished Moroccan chemist and academic scholar serving as Maître de Conférence en Chimie at the École Nationale Supérieure de Chimie, Université Ibn Tofaïl, Kénitra, Maroc. He holds a doctorate in Fundamental and Applied Chemistry with a specialization in the valorization of imidazole compounds for corrosion inhibition of steel in acidic media through theoretical, electrochemical, and spectroscopic studies. His academic background also includes advanced training in physicochemical materials, organic and environmental chemistry, and life sciences. In addition, he has pursued professional development in chemical education, patent systems, and chemical safety in collaboration with the Organisation for the Prohibition of Chemical Weapons (OPCW). Throughout his academic career, Prof. Ouakki has contributed extensively to teaching, research supervision, and curriculum design across undergraduate, engineering, and doctoral programs. His teaching expertise spans electrochemical kinetics, materials science, corrosion mechanisms, and electrolyte chemistry. His research interests focus on corrosion inhibition, green chemistry, electrochemical analysis, materials development, and theoretical modeling of corrosion systems. His research skills include density functional theory (DFT), electrochemical impedance spectroscopy, electrodeposition, dielectric characterization, and molecular dynamics simulations. He has co-supervised several doctoral candidates, published more than a hundred international research papers, contributed multiple book chapters, and secured a patent for novel imidazole-based corrosion inhibitors. As a respected member of editorial boards and a reviewer for leading scientific journals, Prof. Ouakki continues to make remarkable contributions to advancing sustainable chemistry and materials protection. His academic impact is further reflected in his growing recognition with 3,836 citations, 125 documents, and an h-index of 41.

Profiles: Google Scholar | Scopus | ORCID

Featured Publications

Ouakki, M., Galai, M., Rbaa, M., Abousalem, A. S., Lakhrissi, B., Rifi, E. H., & Ebn Touhami, M. (2019). Quantum chemical and experimental evaluation of the inhibitory action of two imidazole derivatives on mild steel corrosion in sulphuric acid medium. Heliyon, 5(11), e02716. Cited by: 147

Rbaa, M., Ouakki, M., Galai, M., Berisha, A., Lakhrissi, B., Jama, C., Warad, I., & Touhami, M. E. (2020). Simple preparation and characterization of novel 8-hydroxyquinoline derivatives as effective acid corrosion inhibitor for mild steel: Experimental and theoretical studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 602, 125094. Cited by: 144

Ouakki, M., Galai, M., Rbaa, M., Abousalem, A. S., Lakhrissi, B., Touhami, M. E., & Cherkaoui, M. (2020). Electrochemical, thermodynamic and theoretical studies of some imidazole derivatives compounds as acid corrosion inhibitors for mild steel. Journal of Molecular Liquids, 319, 114063. Cited by: 140

Ouakki, M., Galai, M., & Cherkaoui, M. (2022). Imidazole derivatives as efficient and potential class of corrosion inhibitors for metals and alloys in aqueous electrolytes: A review. Journal of Molecular Liquids, 345, 117815. Cited by: 123

Oubaaqa, M., Ouakki, M., Rbaa, M., Abousalem, A. S., Maatallah, M., Benhiba, F., & Touhami, M. E. (2021). Insight into the corrosion inhibition of new amino acids as efficient inhibitors for mild steel in HCl solution: Experimental studies and theoretical calculations. Journal of Molecular Liquids, 334, 116520.

 

Hui Li | Materials Chemistry | Chemical Scientist Award

Dr. Hui Li | Materials Chemistry | Chemical Scientist Award

Senior Engineer | Beijing Institute of Smart Energy | China

Dr. Hui Li is a Senior Engineer at the Beijing Institute of Smart Energy, specializing in electrochemical energy storage systems. With a strong foundation in lithium-ion and sodium-ion battery research, Dr. Li has established himself as an influential figure in advancing next-generation energy technologies. He has contributed extensively to both academic research and industrial applications, bridging the gap between fundamental science and real-world energy solutions. Over the years, he has participated in more than 11 major research projects, authored two books, published over 36 scientific papers, and filed 27 patents, of which eight have been authorized. His collaborations extend internationally, including research with the University of California, San Diego, and domestic partnerships with major enterprises to develop large-scale sodium-ion battery systems. Recognized for academic excellence and professional contributions, Dr. Hui Li is a driving force in the development of safe, reliable, and sustainable energy storage technologies.

Professional Profile 

Hui Li’s academic journey reflects a strong commitment to interdisciplinary research and excellence in engineering. He obtained his Bachelor’s degree in Environmental Science from Qingdao Agricultural University , where he laid the foundation for his scientific career. Pursuing higher studies, he joined the Beijing Institute of Technology (BIT) and earned a Ph.D. in Environmental Engineering. During his doctoral training, Hui Li was selected for an international joint research program at the University of California, San Diego , where he studied NanoEngineering with a focus on electrochemical energy materials under leading experts. His academic performance was distinguished with a National Ph.D. Scholarship (2016) and the Excellent Doctoral Dissertation Award from BIT . Through this education, he gained deep expertise in materials science, nanotechnology, and energy engineering, equipping him with the skills to contribute meaningfully to the rapidly evolving field of advanced energy storage technologies.

Experience 

Dr. Hui Li’s professional career spans cutting-edge research, project leadership, and industrial collaboration in the energy sector. He began with an internship at the State Grid Smart Grid Research Institute , working on energy storage projects. Later, as an R&D Engineer at the State Grid Smart Grid Research Institute , he led and contributed to seven major projects, including sodium-ion and liquid metal battery technologies funded by the National Key R&D Program and National Natural Science Foundation. He joined the Beijing Institute of Smart Energy, where he continues as a Senior Engineer, contributing to lithium-ion and sodium-ion battery development, particularly for extreme environments. His work spans research management, scenario analysis, and technology evaluation for grid-scale applications. To date, he has completed nine projects and is actively involved in two ongoing ones, establishing himself as a leading researcher integrating academic innovation with industry-based solutions.

Professional Development

Hui Li has consistently pursued professional development through academic, industrial, and collaborative engagements. He has authored two professional books on electrochemical energy storage and LiDAR applications, reflecting his ability to link theory with practice. He serves as a peer reviewer for multiple journals, including Shandong Electric Power Technology, Battery, and Mining and Metallurgy, ensuring he remains actively involved in evaluating and shaping research in his field. As a mentor at the Beijing Institute of Technology, he contributes to training the next generation of researchers. His editorial and reviewing roles have honed his analytical and critical skills, while his collaborations with top universities and companies, such as the University of California, San Diego and China Enli Co., Ltd., have expanded his expertise in global research networks. Membership in the China Chemical Society further complements his development, keeping him connected to evolving innovations and policy directions in chemical engineering and energy storage.

Skills & Expertise

Hui Li’s expertise spans electrochemical energy storage, battery materials engineering, and system integration. He has advanced knowledge of lithium-ion and sodium-ion battery electrode materials, particularly in aqueous sodium-ion systems and Prussian blue-based compounds. His skills extend across multi-scale design, nanomaterial synthesis, and material genome engineering, enabling him to translate fundamental science into scalable technologies. With 36 peer-reviewed publications and extensive patent contributions, he demonstrates a balance of theoretical insight and practical innovation. His technical competencies include electrochemical performance testing, TEER evaluation, and computational modeling for material optimization. Hui Li also excels in project leadership, having managed large-scale national and corporate-funded projects. His professional versatility allows him to work across academic, industrial, and collaborative research environments, contributing both as a lead investigator and as a team collaborator. His multidisciplinary expertise positions him as a key contributor to the advancement of high-performance, reliable, and sustainable energy storage technologies.

Resarch Focus

Dr. Hui Li’s research focuses on next-generation electrochemical energy storage systems, especially lithium-ion and sodium-ion batteries. His work emphasizes the design, synthesis, and performance optimization of cathode and anode materials, with a strong interest in environmentally friendly, high-safety, and high-capacity systems. He has investigated Prussian blue analogs, Na3V2(PO4)3-based materials, and layered oxides, contributing significantly to the advancement of aqueous sodium-ion batteries. A core aspect of his research is bridging fundamental material mechanisms with device-level applications, including Ah-level battery cells and full system integration for grid storage. Through collaborations with universities and enterprises, he has contributed to the development of a 102.96 kWh water-based sodium-ion battery energy storage system, demonstrating practical scalability. His current research explores material genome engineering, doping strategies, and advanced coatings to enhance battery stability, safety, and electrochemical performance. This integrated approach aims to accelerate the deployment of sustainable energy storage for renewable electricity and smart grid applications.

Awards & Recognitions

Hui Li’s outstanding academic and professional contributions have earned him several prestigious awards and recognitions. During his doctoral studies, he was honored with the National Ph.D. Scholarship , a distinction awarded to top-performing doctoral candidates across China. His doctoral thesis was further recognized with the Excellent Doctoral Dissertation Award  from the Beijing Institute of Technology, an accolade given to only 25 scholars university-wide. He also received the Beijing Institute of Technology Seedling Fund, awarded to only 20 individuals, highlighting his research potential in innovative energy storage materials. Beyond academic honors, Hui Li was recognized as an Outstanding Individual during the State Grid New Employee Induction Training, reflecting his dedication and leadership in professional settings. These achievements underscore his commitment to excellence in research, education, and practical innovation, marking him as a leading scientist contributing to the advancement of sustainable energy storage and smart grid technologies.

Publication Top Notes

Title: Effects of Mg doping on the remarkably enhanced electrochemical performance of Na₃V₂(PO₄)₃ cathode materials for sodium-ion batteries
Authors: H. Li, X.Q. Yu, Y. Bai, F. Wu, C. Wu, L.Y. Liu, X.Q. Yang
Year: 2015

Title: Understanding the electrochemical mechanisms induced by gradient Mg²⁺ distribution of Na-rich Na₃₊ₓV₂₋ₓMgₓ(PO₄)₃/C for sodium-ion batteries
Authors: H. Li, H.M. Tang, C.Z. Ma, Y. Bai, J. Alvarado, B. Radhakrishnan, S.P. Ong, F. Wu, Y.S. Meng, C. Wu
Year: 2018

Title: Na-Rich Na₃₊ₓV₂₋ₓNiₓ(PO₄)₃/C for Sodium Ion Batteries: Controlling the Doping Site and Improving the Electrochemical Performances
Authors: H. Li, Y. Bai, C. Wu, F. Wu, X.F. Li
Year: 2016

Title: Budding willow branches shaped Na₃V₂(PO₄)₃/C nanofibers synthesized via an electrospinning technique and used as cathode material for sodium-ion batteries
Authors: H. Li, Y. Bai, F. Wu, Y. Li, C. Wu
Year: 2015

Title:  Controllable synthesis of high-rate and long cycle-life Na₃V₂(PO₄)₃ for sodium-ion batteries
Authors: H. Li, C. Wu, Y. Bai, F. Wu, M.Z. Wang
Year: 2016

Hui Li is a highly suitable candidate for the Research for Chemical Scientist Award. His research demonstrates a rare balance of fundamental innovation and applied outcomes, particularly in advancing sodium-ion and lithium-ion battery technologies for sustainable energy storage. His track record of publications, patents, and leadership in major funded projects positions him as an impactful researcher at the intersection of chemistry, materials science, and energy engineering.

While greater emphasis on independent international leadership and broader engagement could strengthen his profile, his achievements already place him among the promising chemical scientists driving forward solutions for global energy challenges. He is well-deserving of recognition through this award.

Waldo Ullah | Biochemical Pharmacology | Best Researcher Award

Prof. Dr. Waldo Ullah | Biochemical Pharmacology | Best Researcher Award

Assistant professor at Pontifical Catholic University of Valparaíso, Chile.

🔬 Short Biography 🌿💊📚

Dr. Waldo Acevedo Castillo 🧑‍🔬 is an Associate Professor at the Institute of Chemistry, Faculty of Science, Pontificia Universidad Católica de Valparaíso 🇨🇱. With a Ph.D. and M.Sc. in Engineering Sciences from Pontificia Universidad Católica de Chile 🎓, Dr. Acevedo has established himself as a pioneer in food chemistry and structural bioinformatics 🧪. His research focuses on the molecular characterization of organoleptic food additives 🍬 and rational drug design 💊. He has published extensively in high-impact journals and contributed to multiple interdisciplinary projects in biochemistry and pharmacology. Passionate about teaching and mentoring 👨‍🏫, he guides undergraduate and graduate students in bioinformatics and biochemical research. Dr. Acevedo also plays an active role in academic peer review, editorial boards, and science outreach 🌍. His career blends deep scientific inquiry with educational innovation and societal engagement, making him a dynamic force in the global chemistry community 🌐.

PROFILE 

SCOPUS 

ORCID 

🔍 Summary of Suitability:

Dr. Waldo Acevedo Castillo exemplifies the qualities of an outstanding researcher, with a strong foundation in computational bioinformatics, food chemistry, and biochemical pharmacology. As an Associate Professor at Pontificia Universidad Católica de Valparaíso, he has consistently demonstrated academic excellence, interdisciplinary innovation, and impactful research. His academic background, scientific publications, mentorship, and leadership roles underscore a career devoted to advancing molecular science and contributing to global health and nutrition challenges.

📘 Education & Experience

  • 🎓 Ph.D. in Engineering Sciences, Pontificia Universidad Católica de Chile (2017)

  • 🎓 M.Sc. in Engineering, Pontificia Universidad Católica de Chile (2016)

  • 📚 Diploma in University Teaching, PUCV (2019)

  • 📚 Diploma in Virtual University Training, PUCV (2020)

  • 💻 Graduate in Bioinformatics, Universidad de Talca (2009)

  • 👨‍🏫 Associate Professor, Institute of Chemistry, PUCV

  • 🧬 Bioinformatics Engineer, Universidad de Talca (2009)

  • 📖 Scientific Reviewer, multiple journals including Food Chemistry and Scientific Reports

  • 🔬 Editorial Board Member, Pharmaceutics and Drug Innovation, Journal of Drug Design and Research

Professional Development 🚀📖

Dr. Waldo Acevedo continuously enhances his professional skills through diverse academic and research activities 📈. He has completed numerous training programs in virtual education, AI in teaching, curriculum development, and project formulation at PUCV 🎓. His involvement in interdisciplinary projects spans vertical farming 🌿, enzymatic hydrolysis, and drug formulation for dermatological conditions 🧴. As a mentor, he has supervised numerous undergraduate and postgraduate theses 🧑‍🎓. Dr. Acevedo actively contributes to international research communities as a reviewer and editorial board member 📰. He is also a dedicated science communicator, promoting STEM outreach through the Explora Academies of Research and School Innovation 🧠. His collaborative spirit has led to roles in national research grants and innovation-driven projects 💡. His work bridges cutting-edge science, education, and public engagement, positioning him as a multifaceted professional in molecular chemistry, bioinformatics, and pharmacological sciences 🌍.

Research Focus 🔍🤖

Dr. Waldo Acevedo’s research centers around Food Chemistry, Biochemical Pharmacology, and Structural Bioinformatics 🔍. He investigates the molecular interactions of food additives, especially sweeteners, with human taste receptors 🍭. His research applies computational tools like molecular docking and dynamics to understand taste perception and improve food quality. Additionally, Dr. Acevedo explores the rational design of anticancer and antimicrobial agents 🧬, targeting enzymes and proteins like SIRT2, EGFR, COX-2, and bitter taste receptors. He has participated in drug discovery efforts and virtual screening campaigns that integrate in silico and in vitro approaches 💊. His interdisciplinary projects have included work on skin microbiome modulation, environmental toxicology, and salmon immunology 🐟. With a strong computational background, he brings innovation to molecular modeling, offering insights into bioactive compound mechanisms and receptor-ligand interactions 🔬. His research contributes significantly to both health and food sciences 🌿.

Awards and Honors 🏆🎖️

  • 🧑‍⚖️ Peer Evaluator, CNA-Chile Postgraduate Area (2024–Present)

  • 🧠 Advisory Committee Member, Explora Academies of Research and School Innovation (2024–Present)

  • 🧬 Review Editor, Frontiers in Genome Editing (2024–Present)

  • 📝 Editorial Board Member, Pharmaceutics and Drug Innovation & Journal of Drug Design and Research (2023–Present)

  • 🌐 Chief of Outreach, Institute of Chemistry, PUCV (2023–Present)

  • 🧪 Member, Society of Biochemistry and Molecular Biology of Chile (SBBMCh) (2022–Present)

  • 📚 Board Collaborator, Doctorate Program in Chemistry, PUCV (2018–Present)

  • 🏆 Best Graduate Award, Universidad de Talca (2009)

  • 🌟 Stimulus to Effort Award, Gabriel & Mary Mustakis Foundation (1999)

  • 🗣️ CONICYT Doctoral Scholarship, Chile (2013–2016)

  • 🇬🇧 CORFO English Scholarship, for Global Services Industry (2010)

Publications & Citations 📚

  • Golcienė, B., Kavaliauskas, P., Acevedo, W., et al. (2025).
    Identification of 3-[(4-Acetylphenyl)(4-Phenylthiazol-2-Yl)Amino]Propanoic Acid Derivatives as Promising Anticancer Candidates Targeting SIRT2 and EGFR.
    Pharmaceuticals, 18(5). https://doi.org/10.3390/ph18050733

  • Kavaliauskas, P., Acevedo, W., et al. (2025).
    3,3′-((3-Hydroxyphenyl)azanediyl)dipropionic Acid Derivatives Against Drug-Resistant Pathogens and Cancer.
    Pathogens, 14(5), 484. https://doi.org/10.3390/pathogens14050484

  • Maldonado, J., Oliva, A., Guzmán, L., Molinari, A., Acevedo, W. (2024).
    Synthesis and Anticancer Activity of Hydroquinone-Chalcone-Pyrazoline Hybrids.
    International Journal of Molecular Sciences, 25, 7281. https://doi.org/10.3390/ijms25137281

  • Kavaliauskas, P., Acevedo, W., et al. (2024).
    Bis(thiazol-5-yl)phenylmethane Derivatives Against MDR Staphylococcus aureus.
    PLOS ONE, 19(3), e0300380. https://doi.org/10.1371/journal.pone.0300380

  • Maldonado, J., Oliva, A., Molinari, A., Acevedo, W. (2023).
    Naphthohydroquinone-Derived Chalcones as Anticancer Agents.
    Molecules, 28, 7172. https://doi.org/10.3390/molecules28207172

  • Acevedo, W., Morán-Figueroa, R., Vargas-Chacoff, L., Morera, F. J., Pontigo, J. P. (2023).
    NLRP3 Inflammasome in Salmo salar: Structural and Transcriptomic Insights.
    International Journal of Molecular Sciences, 24, 14556. https://doi.org/10.3390/ijms241914556

  • Maldonado, J., Acevedo, W., et al. (2022).
    Naphthoisoxazolequinone Carboxamides as Antitumor Agents.
    Polycyclic Aromatic Compounds, 42(4), 1–24. https://doi.org/10.1080/10406638.2022.2095410

  • Kavaliauskas, P., Acevedo, W., et al. (2022).
    Naphthoquinone Derivatives Targeting COX-2.
    Pharmaceuticals, 15, 541. https://doi.org/10.3390/ph15050541

  • Balada, C., Castro, M., Fassio, C., Zamora, A., Marchant, M. J., Acevedo, W., Guzmán, L. (2021).
    Genetic Diversity of Curcuma longa from Rapa Nui.
    Saudi Journal of Biological Sciences, 28, 707–716. https://doi.org/10.1016/j.sjbs.2020.10.062

  • Acevedo, W., Cañón, P., Gómez, F., Huerta, J., Aguayo, D., Agosin, E. (2020).
    L-Malate Protonation and Malolactic Enzyme Activity in Oenococcus oeni.
    Molecules, 25(15), 3431–3447. https://doi.org/10.3390/molecules25153431

🔍 Conclusion:

Dr. Waldo Acevedo Castillo stands out as a multidisciplinary researcher whose work bridges computational biology, food sciences, and pharmacology. His contributions have real-world relevance—from drug development to food safety—and his dedication to mentoring and collaborative science magnifies his impact. These attributes align perfectly with the ethos of the Best Researcher Award, making him a strong and deserving candidate for this prestigious recognition.

 

 

Zeinab Rohani Sarvestani | Computational Chemistry | Best Researcher Award

Dr. Zeinab Rohani Sarvestani | Computational Chemistry | Best Researcher Award

Senior Chemist & Technical Director, Pars Sahel Bushehr Laboratory , Iran.

Dr. Zeinab Rohani Sarvestani is a dedicated senior chemist and technical director with a Ph.D. in Inorganic Chemistry. With over a decade of experience, she has contributed to academic, industrial, and standardization sectors. Her work spans computational chemistry, Alzheimer’s drug design, and polymer quality control. As a lecturer and lab leader, she bridges theory with practical innovation. She has published in reputed journals and led several research and consultancy projects. Known for her precision, leadership, and interdisciplinary collaborations, she continues to impact chemical sciences and quality management in Iran and beyond. 👩‍🔬📘🧪🧠

PROFILE 

GOOGLE SCHOLAR 

ORCID 

 

🔍 Summary of Suitability:

Dr. Rohani Sarvestani brings together strong academic credentials with a robust portfolio of interdisciplinary research and real-world application. Holding a Ph.D. in Inorganic Chemistry with a GPA of 19.38/20, she has over a decade of experience spanning academia, laboratory management, and industrial standardization. Her key contributions include:

🎓 Education and Experience 👩‍🏫

🎓 Education:

  • 📘 Ph.D. in Inorganic Chemistry, Persian Gulf University (2016–2025) – GPA: 19.38/20

  • 📘 M.Sc. in Inorganic Chemistry, Isfahan University of Technology (2005–2007) – GPA: 16.20/20

  • 📘 B.Sc. in Pure Chemistry, Shiraz University (2001–2005) – GPA: 15.30/20

💼 Professional Experience:

  • 🧪 Senior Chemist & Technical Director, Pars Sahel Bushehr Co. (2012–Present)

  • 👩‍🏫 Lecturer, University of Applied Science and Technology (2022–Present)

  • 🛠️ Standardization Specialist, Porsa Payesh & Pasanj Co. (2019–2024)

  • 🧫 Research & Technical Supervisor, Darya Services Consulting Co. (2022–2023)

  • 🧪 Quality Control Manager, Sarv ab Co. (2011–2012)

  • 👩‍🏫 High School Chemistry Teacher, Kharazmi School (2012–2014)

Professional Development 🚀📖

Dr. Rohani Sarvestani has actively pursued professional excellence through a blend of research, training, and certification. She holds numerous certifications in ISO/IEC 17025, GLP, and statistical quality control, and has been trained in molecular simulation software like GROMACS. Her participation in educational management and project control reflects her commitment to leadership in both lab and academic settings. 🧑‍🔬📚 She frequently engages in interdisciplinary projects and stays aligned with international standards. Her dual roles as a technical director and university lecturer showcase her dedication to continual improvement and innovation in chemical research and quality assurance. 🧪🔬💡

Research Focus 🔍🤖

Dr. Zeinab Rohani Sarvestani focuses on inorganic and computational chemistry with a strong interest in drug design for Alzheimer’s disease and polymer quality standards. 🧬🧠 Her research integrates theoretical chemistry with molecular modeling to design bioactive compounds, especially platinum–curcumin complexes targeting amyloid fibrils. In industry, she applies her expertise to improve polymer profiles used in various applications, ensuring their compliance with international standards. She actively bridges academic and industrial research through collaborative R&D projects, reinforcing her status as a dynamic, problem-solving scientist. 🧪🔬 Her work lies at the intersection of health, materials science, and chemical innovation. 🧫🧠🔍

Awards and Honors 🏆🎖️

  • 🎓 Top Ph.D. Student, Persian Gulf University – 2017

  • 🏅 Model Quality Control Manager, Bushehr Province – 2017

Publications & Citations 📚

  1. 🧪 “π-Stacking Interactions between Curcumin and Aromatic Rings of Amino Acids in Amyloid Fibrils”Computational and Theoretical Chemistry, 2023, [Cited by: Google Scholar] 📅🧠
    🔗 https://doi.org/10.1016/j.comptc.2023.114175

  2. 🧬 “Evaluation of Inhibition Potential of Platinum(II)–Curcumin Complex on Aβ(1–42) Aggregation: Docking and Molecular Dynamics Simulation”ChemistrySelect, 2025, [Cited by: Google Scholar] 📅🧪
    🔗 https://doi.org/10.1002/slct.202402892

Conclusion

Dr. Zeinab Rohani Sarvestani exemplifies the qualities of a best-in-class researcher—academic excellence, practical innovation, scientific publication, and leadership. Her diverse and high-impact work in both theoretical and applied chemistry not only advances science but also supports public health and industrial standards. She is a strong and deserving candidate for the Best Researcher Award. 🥇🔬📘

 

 

Victor Geanta | Materials Chemistry | Best Researcher Award

Prof. Dr. Victor Geanta | Materials Chemistry | Best Researcher Award

Business/Company at Universiry Politehnica of Bucharest , Romania.

Prof. Dr. Eng. Habil. Victor Geantă 🎓⚙️ is a renowned Romanian scientist specializing in materials science and engineering. With a career spanning over four decades, he has contributed extensively to the development and refinement of metallic and biocompatible materials 🔬🛠️. Serving as a professor at the National University Polytechnica of Bucharest, his expertise covers steel production, alloy refinement, and innovative biomaterials research 🏛️📚. He is a published author with over 100 ISI and Scopus-indexed papers and holds 32 patents 📜🏆. A member of multiple prestigious organizations, Prof. Geantă’s work bridges education, industry, and cutting-edge research globally 🌍✨.

PROFILE 

ORCID 

 

🔍 Summary of Suitability:

Prof. Dr. Eng. Habil. Victor Geantă 🌍🔬 is highly suitable for the Best Researcher Award due to his outstanding and sustained contributions to materials science and engineering over more than four decades. His research output, including over 100 ISI and Scopus-indexed papers, 32 patents, and involvement in 80+ research contracts, demonstrates both academic excellence and practical impact. His interdisciplinary work on biocompatible alloys, high-entropy materials, and innovative metallurgical processes places him at the cutting edge of modern material science 🔥🛠️. His international collaborations and multiple awards (Gold, Bronze, and Special Awards at EUROINVENT) further highlight his global scientific influence 🌟.

🎓 Education & Experience 

  • 🎓 PhD in Materials Science (1999) – Polytechnic University of Bucharest

  • 🎓 Engineer Degree in Extractive Metallurgy (1982) – Polytechnic University of Bucharest

  • 👨‍🏫 Professor – National University Polytechnica of Bucharest (2000–present)

  • 👨‍🏫 Associate Professor – National University Polytechnica of Bucharest (1999–2000)

  • 👨‍🏫 Lecturer – Polytechnic University of Bucharest (1990–1999)

  • 👨‍🏫 Assistant Professor – Polytechnic University of Bucharest (1983–1990)

  • 🏭 Metallurgical Engineer – ICNPT Oltenița (1981–1983)

Professional Development 🚀📖

Prof. Victor Geantă 📚🌍 continually invested in professional growth through specialized training and international experiences. He completed management training in Portugal 🇵🇹, quality systems certification in Romania 🇷🇴, and environmental management in Belgium 🇧🇪. His development journey also included certification in welding and non-destructive testing 🧪🔍. Active in international scientific communities, he holds memberships in societies such as ASM International, TMS, and the New York Academy of Sciences 🌐🧠. With extensive involvement in national and European projects, Prof. Geantă not only advanced his expertise but also significantly contributed to the modernization of metallurgical engineering education and research 🔥🛠️.

Research Focus 🔍🤖

Prof. Geantă’s research focuses primarily on the development, refinement, and processing of special metallic and biocompatible materials 🔩🧬. His work spans the engineering of steel production, refining technologies, and the creation of materials suited for advanced industrial and biomedical applications 🏥🔧. Specialized in obtaining high-purity steels and innovative metallic biomaterials, he continually pushes the boundaries of traditional metallurgy 🔥🧪. His research contracts, totaling more than 80, and numerous patents demonstrate a commitment to practical innovation. Prof. Geantă’s scientific endeavors reflect a blend of fundamental research and industrial relevance, driving progress in materials science and engineering 🚀🔬.

Awards and Honors 🏆🎖️

  • 🏅 Special Award of Korea Invention News – EUROINVENT 2012

  • 🥇 Gold Medal – European Exhibition of Creativity and Innovation, EUROINVENT 2012

  • 🥉 Bronze Medal – European Exhibition of Creativity and Innovation, EUROINVENT 2012

  • 📚 Over 100 ISI and Scopus-indexed scientific papers

  • 🔬 32 Patents in materials science and metallurgy

Publications & Citations 📚

📄 MG-ZN-Y Biocompatible Alloys Produced in a Levitation Furnace (2023) | ✍️ Contributors: Cosmin Gabriel Lala, Adrian-Emanuel Onici, Ionelia Voiculescu, Radu Stefanoiu, Victor Geanta | 🔗 [DOI: 10.24867/IS-2023-T1.1-11_09841] | 📚 Cited by: (citation data not directly available yet)

🧪 High-temperature oxidation of AlCrFeNi-(Mn or Co) high-entropy alloys: Effect of atmosphere and reactive element addition (2021) | ✍️ Contributors: Chongchong Tang, Hao Shi, Adrian Jianu, Alfons Weisenburger, Geanta Victor, Mirco Grosse, Georg Müller, Hans Jürgen Seifert, Martin Steinbrück | 🔗 [DOI: 10.1016/j.corsci.2021.109809] | 📚 Cited by: 31 (approx.)

🎯 Impact Behavior of the Ballistic Targets Package Composed of Dyneema Polymer and High Entropy Alloy Structures (2021) | ✍️ Contributors: I. Voiculescu, V. Geanta, T. Chereches, P. Vizureanu, R. Stefanoiu, A. Rotariu, D. Mitrica | 🔗 [DOI: 10.24425/amm.2022.137792] | 📚 Cited by: 7 (approx.)

🔍 Conclusion:

Prof. Victor Geantă embodies the spirit of innovation, scientific excellence, and impactful research necessary for the Best Researcher Award. His career showcases a rare blend of deep technical expertise, creative problem-solving, and dedication to both academia and industry needs. His legacy in advancing materials science—especially in high-tech and biocompatible applications—makes him an exceptional candidate for this honor. 🏅🚀