Manuel Ángel González Rodríguez | Electrochemistry| Best Researcher Award

Mr. Manuel Ángel González Rodríguez | Electrochemistry| Best Researcher Award

Estudiante investigador de doctorado at CITES, Spain.

🔬 Short Biography 🌿💊📚

Manuel Ángel González Rodríguez is a dedicated chemical engineer and predoctoral researcher at the University of Huelva, Spain. He holds a Bachelor’s degree in Chemistry and is completing his Master’s in Chemical Engineering, both with outstanding academic performance. Currently pursuing a Ph.D. in Industrial and Environmental Science and Technology, his research focuses on the design and optimization of AEM electrolytic cells for renewable hydrogen production. Manuel has contributed to various research projects in sustainable energy and nanomaterials, including work on biolubricants and hydrogen fuel cell integration for aerospace applications. He combines strong analytical skills with expertise in project management and laboratory methods. Passionate about sustainable innovation, he continues to advance clean energy technologies through academic and industry collaborations.

PROFILE 

ORCID 

🔍 Summary of Suitability:

Manuel Ángel González Rodríguez stands out as a highly promising young researcher in the field of chemical engineering and industrial environmental technologies. With a strong academic foundation—graduating with honors in both his undergraduate degree in Chemistry and his ongoing Master’s program in Chemical Engineering—he has consistently demonstrated academic excellence (GPA: 8.9/10 and 9.3/10 respectively). His research trajectory, particularly in green chemistry and hydrogen energy systems, positions him at the forefront of sustainable innovation in electrochemical technologies.

📘 Education

Manuel Ángel González Rodríguez holds a Bachelor’s Degree in Chemistry from the University of Huelva (2019–2023), graduating with an outstanding GPA of 8.9/10. His undergraduate thesis focused on the extraction of Cr(VI) from atmospheric particulate matter, with a final score of 9.9/10 (Honors). He is currently pursuing a Master’s Degree in Chemical Engineering at the same university (2023–2025), where he maintains a GPA of 9.3/10. His master’s thesis investigates chemical modification processes of vegetable oils using sulfur via various synthesis routes, achieving a 9.4/10. In parallel, Manuel is enrolled in a PhD program in Industrial and Environmental Science and Technology, where his research centers on optimizing the design of AEM electrolytic cells for renewable hydrogen production.

Professional Experience

Manuel has gained substantial practical experience in analytical and applied chemical research. During his undergraduate internship at EUROFINS Químico Onubense S.L.U. (Feb–Apr 2023), he conducted analytical determinations in water and soils using spectrophotometry, electrometry, and volumetric techniques. He further collaborated with the University of Huelva under a Santander-funded project (Jun–Aug 2023) to synthesize silica nanoparticles in cellulosic fibers for biolubricant development.

Skills and Competencies

Manuel demonstrates a solid command of project management, advanced Excel, and analytical laboratory techniques. With a B2 level of English, he effectively communicates in both academic and technical environments. His adaptability is reflected in his ability to tailor strategies to diverse project demands, while his results-driven mindset ensures the achievement of ambitious goals and high-performance standards.

Research Focus 🔍🤖

His current PhD research addresses the development and optimization of AEM (Anion Exchange Membrane) electrolytic cells aimed at sustainable hydrogen generation. This includes innovative cell design, integration of low-cost materials, and process scalability, aligning with global energy transition goals.

Awards and Honors 🏆🎖️

Throughout his academic journey, Manuel has consistently achieved top marks, including Honors in his Bachelor’s Thesis and high distinctions in his Master’s coursework and research, highlighting his commitment to academic excellence and innovation in sustainable chemical engineering.

Publications & Citations 📚

  • Determinación analítica de aguas, suelos agrícolas e industriales mediante técnicas espectrofotométricas, electrometría y volumetría
    González Rodríguez, M. Á. (2023)

  • Fabricación de nanopartículas de sílica en fibras celulósicas para el desarrollo de biolubricantes
    González Rodríguez, M. Á., & UHU Research Team (2023)

  • Diseño, experimentación y optimización de celdas electrolíticas tipo AEM para producción de hidrógeno renovable
    González Rodríguez, M. Á., et al. (2024)

  • Diseño e integración del sistema de pila de hidrógeno en banco de pruebas para plataforma aérea
    González Rodríguez, M. Á. (2025)

  • Optimización del diseño de celdas electrolíticas de tipo AEM para producción de hidrógeno a partir de fuentes renovables (en curso)
    González Rodríguez, M. Á. (desde 2025)

🔍 Conclusion:

Manuel Ángel González Rodríguez is highly suitable for the Best Researcher Award, particularly in the early-career category. His focused research on renewable hydrogen production, coupled with his academic merit, industry collaboration, and strong technical competencies, marks him as a rising star in sustainable electrochemical innovation. With increased dissemination of his work and global engagement, he is poised to become a leading figure in his field.

 

 

xianli song | Electrochemistry | Best Researcher Award

Dr. xianli song | Electrochemistry | Best Researcher Award

Anhui polytechnic university , China.

Dr. Xianli Song 🎓 is a dedicated researcher in applied chemistry, currently serving at Anhui Polytechnic University in China 🏫. With a Ph.D. in Applied Chemistry from the University of Chinese Academy of Sciences 🧪, she focuses on advanced battery materials and electrochemical systems 🔋. Dr. Song has published extensively in high-impact journals and actively contributes to academic conferences 🌍. She brings a wealth of lab expertise and technical skillsets 🧫, making significant strides in materials science and sustainable energy solutions 🌱. Her academic excellence has been recognized with multiple awards 🏅 throughout her career.

PROFILE 

SCOPUS

ORCID 

 

🔍 Summary of Suitability:

Dr. Xianli Song is a promising early-career researcher with a Ph.D. in Applied Chemistry and a growing track record of high-impact scientific contributions 🔬. Her work centers around lithium-ion batteries, solid-state electrolytes, and advanced electrochemical systems—areas that are crucial for clean energy technologies ⚡. Her diverse research experience is evidenced by multiple publications in prestigious international journals such as Advanced Functional Materials, Solid State Ionics, and Electrochimica Acta 📚.

🔹 Education & Experience 

  • 🎓 Ph.D. in Applied Chemistry – University of Chinese Academy of Sciences, Beijing (2017–2021)

  • 🎓 M.E. in Chemistry – University of Xinjiang, Urumqi (2013–2016)

  • 🎓 B.E. in Chemical Engineering and Technology – Taishan Medical College (2008–2012)

  • 👩‍🏫 Teaching & Research – School of Chemical and Environmental Engineering, Anhui Polytechnic University

  • 🧪 Research Experience – Expertise in lithium batteries, solid-state electrolytes, nanofibers, and supercapacitors

Professional Development 🚀📖

Dr. Song continually hones her scientific expertise through active participation in conferences, like presenting a poster at the 8th International Congress on Ionic Liquids (COIL-8) in Beijing 🧑‍🔬. Her development is also shaped by hands-on laboratory practice using advanced instruments like XRD, SEM, TEM 🔬, and electrochemical workstations ⚙️. She is proficient in essential software for scientific analysis and documentation 💻. Fluent in English (CET-6) 🌐, she bridges global scientific discourse effectively. Dr. Song’s commitment to professional growth supports her evolving research in high-performance, sustainable energy storage technologies ⚡.

Research Focus 🔍🤖

Dr. Xianli Song’s research 🔍 primarily centers on energy storage and electrochemical materials, with a particular focus on solid-state lithium metal batteries 🔋. Her work involves developing advanced polymer electrolytes, ionogel-ceramic hybrids, and nanofiber membranes for safer, high-performance batteries 🧫. She also explores materials for supercapacitors and transparent conductive films, contributing to green energy technologies 🌿. Her interdisciplinary approach blends materials science, nanotechnology, and applied chemistry 🧪, making her contributions vital for the next generation of renewable energy storage solutions 🔄. Her studies are published in top-tier journals, underscoring the impact of her work 📚.

Awards and Honors 🏆🎖️

  • 🏅 2020 Merit Student Award – University of Chinese Academy of Sciences

  • 🥇 2016 Excellent Graduate Dissertation – Xinjiang University

  • 🎖 2011 Outstanding Student – Taishan Medical College

Publications & Citations 📚

  • 📄 Construction organic composite gel polymer electrolyte for stable solid-state lithium metal batteriesSolid State Ionics, 2025 📅 | 🔍 Cited by: [citation count needed] 📈

  • 📄 Influence of Si content on infrared and electrical properties of metal-free transparent conductive Si-doped DLC filmDiamond & Related Materials, 2025 📅 | 🔍 Cited by: [citation count needed] 📈

  • 📄 Synergistic coupling in “Ionogel-in-Ceramic” solid electrolyte for lithium batteriesAdvanced Functional Materials, 2021 📅 | 🔍 Cited by: [citation count needed] 📈

  • 📄 Li ion distribution in poly(ionic liquid) electrolyte with LATP nanoparticlesElectrochimica Acta, 2021 📅 | 🔍 Cited by: [citation count needed] 📈

  • 📄 Core@shell nanofiber membrane for lithium-metal batteriesSolid State Ionics, 2020 📅 | 🔍 Cited by: [citation count needed] 📈

  • 📄 Ionic liquids as high-voltage electrolytes for supercapacitorsFrontiers in Chemistry, 2020 📅 | 🔍 Cited by: [citation count needed] 📈

  • 📄 Polyaniline-coal based carbon nanofibers for flexible supercapacitorsElectrochimica Acta, 2016 📅 | 🔍 Cited by: [citation count needed] 📈

  • 📄 CdS on coal-based activated carbon nanofibers with photocatalytic propertyChemical Physics Letters, 2016 📅 | 🔍 Cited by: [citation count needed] 📈

  • 📄 Coal-derived porous carbon fibers for electrodes and absorptionJ. Mater. Chem. A, 2015 📅 | 🔍 Cited by: [citation count needed] 📈

  • 📄 Photochromism of pyrazolone derivatives in solid stateNew J. Chem., 2015 📅 | 🔍 Cited by: [citation count needed] 📈

Conclusion

Dr. Song exemplifies what the Best Researcher Award seeks to recognize: innovative, impactful, and relevant scientific work that advances both academia and real-world applications. Her focus on sustainable energy solutions, publication record, and technical expertise make her a strong and deserving candidate for this prestigious honor. 🏅

 

 

Jing Pan | Electrochemistry | Chemical Research Excellence Award

Prof. Jing Pan | Electrochemistry | Chemical Research Excellence Award

Professor at Yangzhou University in China.

🌟 Professor Pan Jing is a distinguished researcher at Yangzhou University, Jiangsu, China 🇨🇳. Her expertise lies in the properties and applications of micro/nanostructural magnetoelectricity, photoelectricity, and catalysis ⚡🔬. She focuses on materials such as ZnO, SnO₂, Graphene, and MoS₂, exploring their potential for photovoltaic applications, environmental improvement, and new energy solutions 🌍🔋. Through her pioneering work, she contributes to advancing sustainable technologies and innovative material applications, making a significant impact in the field of nanoscience and energy research 🚀📡.

Professional Profile

🔍 Summary of Suitability:

Professor Pan Jing’s work in nanomaterials, magnetoelectricity, photoelectricity, and catalysis aligns well with the award’s criteria. Her pioneering studies on materials like ZnO, SnO₂, Graphene, and MoS₂ contribute to chemical research innovations in photovoltaics, energy solutions, and environmental sustainability 🌍⚡.

🎓 Education:

  • Ph.D. in Materials Science 🏅 – Specialized in nanomaterials and their applications.

  • Master’s Degree in Chemistry 🧪 – Focused on material properties and catalysis.

  • Bachelor’s Degree in Physics/Chemistry 📚 – Built a strong foundation in material sciences.

🏆 Experience:

  • Professor at Yangzhou University, Jiangsu, China 🎓 – Leading research in nanostructural magnetoelectricity, photoelectricity, and catalysis.

  • Research on ZnO, SnO₂, Graphene, and MoS₂ 🔬 – Exploring their applications in photovoltaics, environmental improvement, and new energy.

  • Contributor to Sustainable Technologies 🌍 – Innovating materials for cleaner energy and environmental advancements.

  • Mentor & Educator 👩‍🏫 – Guiding students and researchers in advanced material sciences.

Professional Development 🚀📖

🔬 Professor Pan Jing has dedicated her career to advancing nanomaterials research at Yangzhou University, Jiangsu, China 🇨🇳. She has conducted cutting-edge studies on ZnO, SnO₂, Graphene, and MoS₂, exploring their magnetoelectric, photoelectric, and catalytic properties ⚡🧪. Her work contributes to sustainable energy solutions, environmental enhancement, and photovoltaic advancements 🌍🔋. Actively engaged in scientific collaborations, academic mentoring, and interdisciplinary research, she fosters innovation in nanotechnology 🚀. Through publications, conferences, and educational leadership, she inspires the next generation of scientists, shaping the future of energy and materials science 📚🏆.

 

Research Focus 🔍🤖

Professor Pan Jing focuses her research on nanomaterials and their multifunctional properties 🔬🌟. Her work explores the magnetoelectric, photoelectric, and catalytic behaviors of advanced materials like ZnO, SnO₂, Graphene, and MoS₂ ⚡🧪. These materials have transformative applications in photovoltaics, sustainable energy, and environmental remediation 🌍🔋. Her studies aim to enhance energy efficiency, develop eco-friendly technologies, and advance nano-enabled solutions 🚀. By integrating nanotechnology with renewable energy and environmental science, she contributes to cutting-edge advancements in material science, fostering innovation for a cleaner and more energy-efficient future 💡🏆.

Publication Top Notes:

1️⃣ High-efficient OER/ORR bifunctional electrocatalyst based on single transition-metal anchored Graphynes – R. Wang, W. Su, Z. Kang, S. Guo, J. Pan (📅2025) [0️⃣ citations] 📄 Applied Surface Science

2️⃣ Boosting oxygen evolution reaction by FeNi hydroxide-organic framework electrocatalyst toward alkaline water electrolyzer – Y. Chen, Q. Li, Y. Lin, J. Hu, X. Xu (📅2024) [1️⃣7️⃣ citations] 📄 Nature Communications

3️⃣ Enhanced oxygen evolution reaction activity on two-dimensional vdW ferromagnetic Cr₂Ge₂Te₆ through synergism between two active sites – Z. Kang, W. Su, Q. Li, J. Hu, J. Pan (📅2024) [0️⃣ citations] 📄 Physical Chemistry Chemical Physics

4️⃣ TM-doping modulated p-d orbital coupling to enhance the oxygen evolution performance of Ni₃S₂ – Q. Li, M. Zhang, R. Wang, J. Pan, H. Fu (📅2024) [0️⃣ citations] 📄 Nanoscale Advances

5️⃣ Oxygen-Vacancy-Induced Enhancement of BiVO₄ Bifunctional Photoelectrochemical Activity for Overall Water Splitting – H. Fu, Q. Qi, Y. Li, J. Pan, C. Zhong (📅2024) [1️⃣ citation] 📄 Nanomaterials

6️⃣ Active site transfer improves electrocatalytic activity of Fe₃GeTe₂ edge planes for the oxygen evolution reaction: a first-principles calculation study – W. Su, Z. Kang, Q. Li, J. Pan (📅2024) [0️⃣ citations] 📄 New Journal of Chemistry

🎯 Conclusion:

Professor Pan Jing’s innovative research, interdisciplinary impact, and dedication to advancing chemical sciences make her an excellent nominee for the Chemical Research Excellence Award 🏅. Her contributions drive sustainable advancements in energy, catalysis, and nanomaterials, reinforcing her outstanding achievements in chemical research.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Javad Tashkhourian | Electrochemistry | Best Researcher Award

 

Prof. Javad Tashkhourian | Electrochemistry | Best Researcher Award

Research Scholar at Shirazu University in Iran.

Javad Tashkhourian, Ph.D. 🎓 is a distinguished professor in Analytical Chemistry at Shiraz University, Iran. With expertise in electrochemical sensors, chemometrics, and nanomaterials 🧪, he has significantly contributed to the field through extensive research and numerous publications. Dr. Tashkhourian has been recognized as one of the world’s top 2% scientists by Stanford University (2021-2024) 🌍 and has received multiple awards for excellence in research and education 🏆. His work focuses on developing innovative chemical sensors, energy-related materials, and analytical methodologies, making a profound impact on modern chemistry 🔬.

Professional Profile
Suitability for the Best Researcher Award

Prof. Javad Tashkhourian is a highly accomplished analytical chemist 🧪 with a strong track record of cutting-edge research, innovation, and scientific impact. His contributions to electrochemical sensors, nanomaterials, and chemometrics have significantly advanced analytical chemistry. Recognized among the world’s top 2% scientists by Stanford University (2021-2024) 🌍, he has received multiple Distinguished Professor awards for excellence in research and education 🎖️.

Education 🎓

B.Sc. in Chemistry – Shiraz University, 1997 🏛️
M.Sc. in Analytical Chemistry – Shiraz University, 2000 🧪

  • Thesis: Designed a liquid membrane system for selective silver transport & multi-acid determination
    Ph.D. in Analytical Chemistry – Shiraz University, 2005 🔬
  • Thesis: Developed optical and potentiometric sensors & applied chemometrics in multicomponent analysis

Academic Experience 👨‍🏫

Assistant Professor – Persian Gulf University, Iran (2005-2010) 📚
Assistant Professor – Shiraz University, Iran (2010-2015) 🏛️
Associate Professor – Shiraz University, Iran (2015-2024) 🔬
Professor – Shiraz University, Iran (2024-Present) 🎖️

Professional Development 🚀📖

Prof. Javad Tashkhourian has built an illustrious career in Analytical Chemistry 🧪, advancing research in electrochemical sensors, chemometrics, and nanomaterials 🔬. Starting as an Assistant Professor (2005), he progressed to Associate Professor (2015) and became a Full Professor (2024) at Shiraz University 🏛️. His groundbreaking work has earned him multiple “Distinguished Professor” awards 🏆 and recognition among the world’s top 2% scientists (Stanford University, 2021-2024) 🌍. Through cutting-edge research, mentorship, and innovation, he continues shaping modern analytical techniques, contributing to both academia and industry 💡.

Research Focus 🔍🤖

Prof. Javad Tashkhourian specializes in Analytical Chemistry 🧪, with a strong focus on electrochemical sensors, nanomaterials, and chemometrics. His research explores ion transport through liquid membranes ⚛️, the development of optical and potentiometric sensors 📡, and the application of nanomaterials in electroanalysis 🌿. He also works on energy-related materials, including fuel cells, solar cells, and supercapacitors ⚡. His studies contribute to environmental monitoring, biomedical diagnostics, and food safety 🏥🍏. Through innovative methodologies, he enhances analytical techniques, pushing the boundaries of modern chemistry toward smarter sensing and sustainable energy solutions 🌍💡.

Awards & Honors 🏆

Distinguished Ph.D. Student – Shiraz University (2005) 🎓
Distinguished Professor in Education – Persian Gulf University (2010) 👨‍🏫
Distinguished Professor in Research – College of Science, Shiraz University (2017, 2022) 🏛️
Recognized Among the World’s Top 2% Scientists – Stanford University (2021, 2022, 2023, 2024) 🌍🔬

Publication Top Notes:

📄 Silver nanoparticles modified carbon nanotube paste electrode for simultaneous determination of dopamine and ascorbic acid – J Tashkhourian, MRH Nezhad, J Khodavesi, S Javadi | 📰 Journal of Electroanalytical Chemistry 633 (1), 85-91 | 📅 2009 | 🔍 Cited by: 187

📄 Simultaneous determination of hydroquinone and catechol at gold nanoparticles mesoporous silica modified carbon paste electrode – J Tashkhourian, M Daneshi, F Nami-Ana, M Behbahani, A Bagheri | 📰 Journal of Hazardous Materials 318, 117-124 | 📅 2016 | 🔍 Cited by: 148

📄 Artificial neural network-genetic algorithm based optimization for the adsorption of methylene blue and brilliant green from aqueous solution by graphite oxide nanoparticle – M Ghaedi, N Zeinali, AM Ghaedi, M Teimuori, J Tashkhourian | 📰 Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 125, 264-277 | 📅 2014 | 🔍 Cited by: 131

📄 A sensitive electrochemical sensor for determination of gallic acid based on SiO2 nanoparticle modified carbon paste electrode – J Tashkhourian, SF Nami-Ana | 📰 Materials Science and Engineering: C 52, 103-110 | 📅 2015 | 🔍 Cited by: 122

📄 Sensitive spectrophotometric detection of dopamine, levodopa and adrenaline using surface plasmon resonance band of silver nanoparticles – MR Hormozi Nezhad, J Tashkhourian, J Khodaveisi | 📰 Journal of the Iranian Chemical Society 7, S83-S91 | 📅 2010 | 🔍 Cited by: 109

📄 Determination of vanadyl ions by a new PVC membrane sensor based on N, N’-bis-(salicylidene)-2, 2-dimethylpropane-1, 3-diamine – MR Ganjali, P Norouzi, F Faridbod, S Riahi, J Ravanshad, J Tashkhourian, … | 📰 IEEE Sensors Journal 7 (4), 544-550 | 📅 2007 | 🔍 Cited by: 103

📄 Synthesis and application of molecularly imprinted nanoparticles combined ultrasonic assisted for highly selective solid phase extraction trace amount of celecoxib from human samples – M Arabi, M Ghaedi, A Ostovan, J Tashkhourian, H Asadallahzadeh | 📰 Ultrasonics Sonochemistry 33, 67-76 | 📅 2016 | 🔍 Cited by: 101

📄 ZnO nanoparticles and multiwalled carbon nanotubes modified carbon paste electrode for determination of naproxen using electrochemical techniques – J Tashkhourian, B Hemmateenejad, H Beigizadeh, M Hosseini-Sarvari, … | 📰 Journal of Electroanalytical Chemistry 714, 103-108 | 📅 2014 | 🔍 Cited by: 95

📄 Topical delivery of chitosan-capped silver nanoparticles speeds up healing in burn wounds: A preclinical study – A Oryan, E Alemzadeh, J Tashkhourian, SFN Ana | 📰 Carbohydrate Polymers 200, 82-92 | 📅 2018 | 🔍 Cited by: 79

📌 Conclusion:

Prof. Javad Tashkhourian’s groundbreaking research, global recognition, and impact on analytical chemistry and nanotechnology make him an outstanding candidate for the Best Researcher Award 🏆. His innovative contributions continue to shape the future of scientific advancements, making him a worthy recipient of this prestigious honor 👏.