Su Jin Kim | Separation Process | Best Researcher Award

Prof. Dr. Su Jin Kim | Separation Process | Best Researcher Award

professor at Department of Chemical & Biological Engineering/Chungwoon University , South Korea.

Prof. Dr. Su Jin Kim 🇰🇷 is a distinguished chemical engineer and professor at Chungwoon University 🏫. With a Ph.D. from the Tokyo Institute of Technology 🎓, she has dedicated over two decades to advancing separation processes in chemical engineering ⚗️. Her research has led to innovative energy-saving extraction and purification methods 💡. She has completed 17 major research projects and published 35+ papers in renowned journals 📚. Prof. Kim continues to contribute to both academic and industrial progress through her cutting-edge consultancy projects and passion for chemical science innovation 🔬🌟.

PROFILE 

GOOGLE SCHOLAR 

SCOPUS 

🔍 Summary of Suitability:

Prof. Dr. Su Jin Kim exemplifies the qualities of an exceptional researcher with a career spanning over three decades in chemical engineering 🧪. She holds a Ph.D. from the prestigious Tokyo Institute of Technology 🎓 and has served as a professor at Chungwoon University since 1997. Her research portfolio boasts 35 publications in high-impact SCIE and Scopus journals 📚, 17 completed projects, and extensive contributions to both academia and industry through 12 consultancy projects 🤝. Her work has significantly advanced energy-efficient, environmentally sustainable separation and purification techniques 🌱.

Education & Experience

  • 🧪 Ph.D. in Chemical Engineering – Tokyo Institute of Technology, Japan (1992.4 – 1995.3)

  • 🔬 Researcher – Tokyo Institute of Technology, Dept. of Chemical Engineering (1988.10 – 1990.3)

  • 🧑‍🔬 Postdoctoral Researcher – Korea Research Institute of Chemical Technology (1995.4 – 1997.2)

  • 👩‍🏫 Professor – Chungwoon University, South Korea (1997.3 – Present)

Professional Development 🚀📖

Prof. Kim’s professional journey showcases remarkable dedication to both education and research development 📚💼. As a long-serving professor, she mentors students and conducts cutting-edge experiments in separation science 🔍. She’s actively engaged in both academic and industrial research, contributing to 12 industry projects and publishing extensively in SCI and Scopus-indexed journals 📄. Her collaborations span Korea and Japan, reflecting a strong international network 🌍. Her scientific output includes pioneering work in high-purity purification processes and solvent extraction technologies, ensuring continued innovation in chemical engineering 🧪🛠️.

Research Focus 🔍🤖

Prof. Kim’s research is centered on separation and purification processes 🔬—critical areas in chemical and biological engineering. She has advanced technologies for removing nitrogen compounds, recovering indole, and purifying 2,6-dimethylnaphthalene from coal tar and light cycle oil 🛢️💧. Her work enables environmentally friendly and energy-efficient alternatives to traditional distillation, helping to upgrade fuels and recycle waste plastics ♻️. With 35 journal publications and 17 completed projects, she continues pushing the boundaries of sustainable chemical processing 🧫⚗️. Her studies bridge academic insights and industrial applications, focusing on high purity and efficiency 🌱🔍.

Awards and Honors 🏆🎖️

  • 🥇 Nominated for Best Researcher Award – International Chemical Scientist Awards 2025

  • 🏆 Recognized for High-impact publications in SCI & Scopus-indexed journals (35 total)

  • 📊 Principal Investigator on 17 completed and 1 ongoing research projects

  • 🔧 Contributor to 12 industry-related projects, bridging academia and industry

  • 🎖️ Citation Index presence in SCIE and Scopus databases, confirming global recognition

Publications & Citations 📚

  • 📅 2024Study on removal of nitrogen-containing heterocyclic compounds… – SCIE, cited by SCIE/Scopus 📈

  • 📅 2024Enrichment of indole by n-hexane re-extraction… – Scopus, cited by Scopus 📊

  • 📅 2024Comparison of extraction solvents on separation performance of indole… – Scopus, cited by Scopus 🔬

  • 📅 2023Experimental study on enrichment of indole in wash oil… – SCIE, cited by SCIE 🔎

  • 📅 2023Effect of experimental factors on reduction of nitrogen compounds… – Scopus, cited by Scopus 🧪

  • 📅 2022Purification of indole in wash oil via extraction and crystallization… – SCIE, cited by SCIE 🧫

  • 📅 2022Reduction of nitrogen compounds in methylnaphthalene oil (I & II) – Scopus, cited by Scopus 📘

  • 📅 2021Upgrading of wash oil through nitrogen compound reduction – SCIE, cited by SCIE ♻️

  • 📅 2020Improvement of distillate from waste plastic pyrolysis oil… – SCIE, cited by SCIE 🌍

  • 📅 2019Purification of 2,6-DMN from light cycle oil… – SCIE, cited by SCIE 🧬

  • 📅 2019Separation of indole in coal tar model system… – SCIE, cited by SCIE ⚗️

  • 📅 2019Quality improvement of pyrolysis oil via DMF extraction – Scopus, cited by Scopus 🔄

  • 📅 2018Purification of 2,6-DMN via crystallization – Scopus, cited by Scopus ❄️

  • 📅 2018Recovery of paraffins from pyrolysis oil by 4-stage extraction – Scopus, cited by Scopus 🛢️

  • 📅 2016Separation of nitrogen compounds using methanol vs. formamide – SCIE, cited by SCIE 🔍

  • 📅 2015Methanol/formamide extraction comparison – Scopus, cited by Scopus 💧

  • 📅 2014High-purity purification of indole (coal tar) – Scopus, cited by Scopus 🧴

  • 📅 2014Methanol extraction in 9-compound system – Scopus, cited by Scopus 🧪

  • 📅 2014Crystallization of DMN isomers – Scopus, cited by Scopus 🧊

  • 📅 2012Vapor-liquid equilibria studies (various systems) – SCIE, cited by SCIE 🌡️

  • 📅 2012Vapor-liquid equilibria in glycol ether systems – SCI, cited by SCI 🌫️

  • 📅 2010Liquid membrane permeation of nitrogen compounds – SCI, cited by SCI 🧬

  • 📅 2010Indole separation via crystallization – Scopus, cited by Scopus 🧼

  • 📅 2008Purification of 2,6-DMN by crystallization – Scopus, cited by Scopus ❄️

  • 📅 2007Recovery of indole via 5-stage extraction – Scopus, cited by Scopus 🔄

  • 📅 2005Solvent extraction of nitrogen heterocyclics – SCI, cited by SCI 🔬

  • 📅 2004Bicyclic aromatic separation by liquid membrane – SCI, cited by SCI 🧫

  • 📅 2003DMN isomer recovery by distillation-extraction – SCI, cited by SCI 🧪

  • 📅 2003Recovery of bicyclic aromatics in LCO – SCI, cited by SCI 🛢️

  • 📅 2001Scale-up of stirred tank contactors for membrane permeation – SCI, cited by SCI ⚙️

  • 📅 1998Polypropylene morphology by crystallization – SCIE, cited by SCIE ❄️

  • 📅 1998Membrane vs. solvent extraction in aromatic separation – Scopus, cited by Scopus 🧃

  • 📅 1997Hydrocarbon separation by surfactant membrane – SCI, cited by SCI 💡

🔍 Conclusion:

Prof. Su Jin Kim meets and exceeds the benchmarks expected of a Best Researcher Award recipient. Her innovative, sustainable, and impactful research in chemical separation processes—combined with a strong academic publishing track record and industry relevance—make her a top candidate for the honor 🥇. Her contributions not only advance chemical engineering but also serve broader societal goals such as environmental sustainability and energy efficiency 🌍.

 

 

Wojciech Zapała | Chemical Engineering | Best Researcher Award

Prof. Wojciech Zapała | Chemical Engineering | Best Researcher Award

Associate Professor at Department of Chemical and Process Engineering, Faculty of Chemistry, Rzeszow University of Technology in Poland.

🔬 Wojciech Zapała is a distinguished researcher from Poland 🇵🇱, specializing in chromatography, adsorption processes, and mathematical modeling of separation techniques. With numerous contributions to analytical chemistry and separation science, his work spans innovative studies on biomass flowability, silver(I) complexes, and chromatographic retention models. His research has been published in prestigious journals, reflecting his expertise in sorption thermodynamics, bioactive compounds, and environmental chemistry. An active peer reviewer for multiple journals, Zapała continues to advance scientific knowledge through groundbreaking investigations and collaborations. 📚🔍✨

Professional Profile

🔍 Summary of Suitability:

Dr. Wojciech Zapała is an exceptional candidate for the Best Researcher Award, given his extensive contributions to analytical chemistry, chromatography, and separation science. His research spans sorption thermodynamics, bioactive compounds, biomass flowability, and mathematical modeling, demonstrating a strong impact on scientific advancements. With numerous high-impact publications, peer-review activities, and leadership in innovative studies, he exemplifies research excellence, dedication, and innovation.

🎓 Education:

  • Ph.D. in Analytical Chemistry 🧪 – Specializing in chromatography and separation science.

  • Master’s in Chemical Engineering 🏭 – Focused on adsorption processes and thermodynamics.

💼 Experience:

  • Researcher & Scientist 🔬 – Expertise in chromatography, sorption thermodynamics, and bioactive compounds.

  • Academic Author & Reviewer 📖 – Published numerous scientific papers in prestigious journals.

  • Project Investigator 📊 – Led studies on mass transport kinetics and mathematical modeling.

  • Peer Reviewer ✅ – Active reviewer for journals like AgriEngineering, Applied Sciences, Molecules, and Sustainability.

  • Collaborator 🤝 – Worked on interdisciplinary research in analytical chemistry and environmental science.

 

Professional Development 🚀📖

🔬 Wojciech Zapała has continuously advanced his expertise in analytical chemistry and chromatography through rigorous research and academic collaborations 📚. He has led innovative studies in separation science, sorption thermodynamics, and bioactive compounds 🏆. As an active peer reviewer for top scientific journals ✅, he ensures high research standards. His participation in international conferences 🌍 and research projects 📊 has expanded his impact in the scientific community. With a strong foundation in mathematical modeling and environmental chemistry, Zapała remains dedicated to scientific excellence and continuous learning 📖✨.

Research Focus 🔍🤖

🔬 Wojciech Zapała specializes in analytical chemistry, with a strong focus on chromatography, separation science, and sorption thermodynamics 📊. His research explores mass transport kinetics, adsorption processes, and biomass flowability 🌱. He has contributed significantly to bioactive compound analysis, environmental chemistry, and metal complex synthesis ⚛️. Through mathematical modeling 🧮, he enhances the efficiency of liquid chromatography and material retention studies. His interdisciplinary approach extends to pharmaceutical analysis, biochemical interactions, and green chemistry solutions 🌿. His work is instrumental in advancing scientific techniques for sustainable and precise chemical analysis 🏆.

Publication Top Notes:

📖 Analysis of amylbenzene adsorption equilibria on an RP-18e chromatographic column – M Gubernak, W Zapala, K Kaczmarski, Acta Chromatographica, 2003, 📑 Cited by: 45

🔥 Modeling of thermal processes in high pressure liquid chromatography: I. Low pressure onset of thermal heterogeneity – K Kaczmarski, J Kostka, W Zapala, G Guiochon, Journal of Chromatography A, 2009, 📑 Cited by: 44

🧪 Synthesis, spectral and thermal study of La (III), Nd (III), Sm (III), Eu (III), Gd (III) and Tb (III) complexes with mefenamic acid – L Zapała, M Kosińska, E Woźnicka, Ł Byczyński, W Zapała, Journal of Thermal Analysis and Calorimetry, 2016, 📑 Cited by: 38

🔬 Comparison of spectral and thermal properties and antibacterial activity of new binary and ternary complexes of Sm (III), Eu (III) and Gd (III) ions with N-phenylanthranilic … – L Zapała, M Kosińska, E Woźnicka, Ł Byczyński, E Ciszkowicz, … Thermochimica Acta, 2019, 📑 Cited by: 30

⚗️ Preparation, spectral properties and thermal decomposition of new ternary complexes of La (III), Ce (III), Pr (III) and Nd (III) ions with N-phenylanthranilic acid and 1,10 … – L Zapała, M Kosińska, E Woźnicka, Ł Byczyński, W Zapała, … Thermochimica Acta, 2018, 📑 Cited by: 26

💧 Influence of mobile phase composition on retention factors in different HPLC systems with chemically bonded stationary phases – W Zapala, Journal of Chromatographic Science, 2003, 📑 Cited by: 22

🔥 Spectroscopic study, thermal investigation and evolved gas analysis (EGA) during pyrolysis and oxidative decomposition of new binuclear complexes of La (III), Ce (III), Pr (III … – L Zapała, M Kosińska, E Woźnicka, Ł Byczyński, W Zapała, … Journal of Analytical and Applied Pyrolysis, 2017, 📑 Cited by: 18

🌡 Thermal study, temperature diffraction patterns and evolved gas analysis during pyrolysis and oxidative decomposition of novel ternary complexes of light lanthanides with … – M Kosińska-Pezda, L Zapała, U Maciołek, Ł Byczyński, E Woźnicka, … Journal of Analytical and Applied Pyrolysis, 2021, 📑 Cited by: 17

🍃 Green synthesis of niflumic acid complexes with some transition metal ions (Mn (II), Fe (III), Co (II), Ni (II), Cu (II) and Zn (II)). Spectroscopic, thermoanalytical and … – L Zapała, M Kosińska-Pezda, Ł Byczyński, W Zapała, U Maciołek, … Thermochimica Acta, 2021, 📑 Cited by: 14

🔄 Comparison of Different Retention Models in Normal-and Reversed-Phase Liquid Chromatography with Binary Mobile Phases – W Zapala, K Kaczmarski, T Kowalska, Journal of Chromatographic Science, 2002, 📑 Cited by: 14

🧴 Analysis of amylbenzene adsorption equilibria on different RP-HPLC – M Gubernak, W Zapala, K Tyrpien, K Kaczmarski, Journal of Chromatographic Science, 2004, 📑 Cited by: 11

🌿 Mechanical properties of solid biomass as affected by moisture content – M Przywara, R Przywara, W Zapała, I Opaliński, AgriEngineering, 2023, 📑 Cited by: 8

🎯 Conclusion:

Given his groundbreaking research, scientific excellence, and global impact in analytical chemistry, Dr. Wojciech Zapała is a highly deserving candidate for the Best Researcher Award 🏅. His work significantly contributes to scientific innovation, advancing knowledge, and improving analytical techniques, making a lasting impact on the research community.