Svetlna Ilić| Materials Chemistry| Best Researcher Award

Dr. Svetlna Ilić| Materials Chemistry| Best Researcher Award

Senior Research Associate at Vinča Institute of Nuclear Sciences, University of Belgrade, National Institute of the Republic of Serbia,Serbia.

🔬 Short Biography 🌿💊📚

Dr. Svetlana Ilić is a Senior Research Associate at the Vinča Institute of Nuclear Sciences, part of the University of Belgrade and a national research institute in Serbia. She is affiliated with the Materials Laboratory, where her work focuses on the synthesis, processing, and characterization of nanostructured materials for diverse applications—ranging from energy and mechanical engineering to environmental protection and biomedical uses vinca.rs +1 intranet.vin.bg.ac.rs +1 . Dr. Ilić earned her B.Sc. in Inorganic Chemical Technology from the University of Belgrade (2008) and completed her Ph.D. (2018) at the same institution, specializing in sol–gel synthesis and characterization of iron‑doped mullite . Her current research includes developing modified clay separation media, porous semiconductors, oxide-based ceramics, and catalytic filters for diesel particulate removal

PROFILE 

ORCID

Scopus

🔍 Summary of Suitability:

Dr. Svetlana Ilić is a dedicated and accomplished researcher with impactful contributions to ceramic materials science. Her focus on sustainable and functional ceramics derived from natural or waste sources demonstrates her commitment to practical solutions in energy and environmental applications. She also exemplifies academic responsibility through reviewer and editorial roles and active collaboration in European research networks.

🎓 Education

Dr. Svetlana Ilić completed both her Bachelor of Science (BSc) and Doctor of Philosophy (PhD) degrees at the Faculty of Technology and Metallurgy, University of Belgrade, Serbia 🇷🇸. Her academic training laid a strong foundation in materials science, particularly in ceramic processing, powder metallurgy, and advanced characterization techniques. This comprehensive education has been instrumental in shaping her successful research career in functional ceramics and nanomaterials.

🧪 Experience

Since February 1, 2011, Dr. Ilić has been serving as a Senior Research Associate at the Department of Materials, Vinča Institute of Nuclear Sciences, University of Belgrade 🔬. Her work focuses on the synthesis and consolidation of pure and doped mullite powders, development of dense and porous ceramics, and the utilization of natural raw materials for ceramic production. She is highly skilled in structural, microstructural, and mechanical characterization techniques including XRD, SEM, Mössbauer spectroscopy, and nanoindentation. Over the years, she has participated in multiple national and international projects related to refractory materials, LTCC materials, thermal insulators, and porous ceramic structures.

🛠️ Skills

Dr. Ilić possesses a versatile set of technical and soft skills. Technically, she is proficient in advanced materials synthesis and characterization methods. She demonstrates high competency in using tools like XRD, SEM, nanoindentation, and spectroscopy. In addition to her experimental expertise, she is highly organized, responsible, and an effective communicator. She is fluent in Serbian and proficient in English, and adept in Microsoft Office, Google Drive, and various digital research platforms. Her collaborative spirit, adaptability, and willingness to learn make her a valuable member of interdisciplinary research teams.

🏅 Awards and Recognitions

Dr. Ilić’s scientific excellence is reflected through her active involvement in editorial and peer review activities. She served as a Guest Editor for Metallurgical and Materials Data between April and July 2024 and has reviewed articles for prestigious journals including the Journal of the American Ceramic Society, Journal of the European Ceramic Society, and Ceramics International. Her contributions as a reviewer and editor underscore her expertise and respected position in the ceramic science community, even though specific awards are not listed.

🔬 Research Focus

Dr. Ilić’s research is primarily centered on the synthesis, processing, and characterization of nanostructured and ceramic materials for applications in energy, environmental protection, and mechanical systems. She specializes in mullite-based ceramics—both dense and porous—as well as in the development of refractory and insulating materials from natural and waste sources. Her recent work includes modifying porous ceramics with nano-additives for improved catalytic performance, studying the magnetic properties of self-assembled graphene films, and developing materials for wastewater treatment and diesel particulate filtration. Her involvement in European COST Actions and multidisciplinary projects highlights her commitment to sustainable materials science and applied research.

Publications & Citations 📚

  • Ilić, S., Maletaškić, J., Skoko, Ž., Vuksanović, M. M., Radovanović, Ž., Ristović, I., & Šaponjić, A. (2025). Utilization of waste clay–diatomite in the production of durable mullite-based insulating materials. Applied Sciences, 15(13), 7512. https://doi.org/10.3390/app15137512

  • Savić, A., Vuksanović, M. M., Savić, M., Knežević, N., Šaponjić, A., Ilić, S., & Egelja, A. (2025). Modified silica particles coated with Cu–Al layered double hydroxide for phosphate and arsenate removal in water treatment. Molecules, 30(10), 2138. https://doi.org/10.3390/molecules30102138

  • Ilic, S., Šaponjić, A., Ivanovski, N. V., Posarac-Marković, M., Kokunesoski, M., Janacković, D., & Devecerski, A. (2024). Influence of iron on the mullite formation. Science of Sintering, 56(4), 425–438. https://doi.org/10.2298/SOS240425017I

  • Posarac-Marković, M., Jovic Orsini, N., Ilic, S., Kuzmanovic, M., Šaponjić, A., Radovanović, Z., & Matović, B. (2024). Structural and morphological studies on yttrium-doped magnesium aluminate spinel powders synthesized by mixed-fuel solution combustion synthesis approach. Science of Sintering, 56(8), 821–836. https://doi.org/10.2298/SOS240821036P

  • Ružić, J., Maletaškić, J., Radovanović, Ž., & Ilić, S. (2024). Mechanical properties of mullite investigated by nanoindentation. Metallurgical and Materials Data, 29, Article 29. https://doi.org/10.30544/MMD29

  • Kokunesoski, M., Janacković, D., Kićević, D., Ilic, S., & Šaponjić, A. (2023). The effect of acrylate on the properties and machinability of alumina ceramics. Science of Sintering, 55(1), 103–115. https://doi.org/10.2298/SOS2301103K

🔍 Conclusion:

Highly suitable for the Best Researcher Award. Dr. Ilić combines scientific excellence, sustained productivity, community service, and innovation. She stands out as a role model in applied materials research and is poised to make further significant contributions on a global scale with continued support and recognition.

Chuanlin Wang | Materials Chemistry | Best Researcher Award

Dr. Chuanlin Wang | Materials Chemistry | Best Researcher Award

Director of Smart Construction Major at Shantou University, China.

🔬 Short Biography 🌿💊📚

Dr. Chuanlin Wang 🎓 is a distinguished civil engineer and researcher currently serving as a Lecturer in the Department of Civil and Environmental Engineering at Shantou University, China 🇨🇳. With a strong academic background in civil engineering, he earned his Ph.D. from the University of Leeds 🇬🇧 and his B.A. from the Dalian University of Technology 🇨🇳. His professional focus centers around innovative concrete materials 🧱, particularly in enhancing performance under marine conditions 🌊. Dr. Wang’s work contributes significantly to developing ultra-high-performance concrete, fiber-reinforced composites, and structure enhancement techniques. His impactful research is backed by key provincial grants 🧪 and has led to numerous peer-reviewed publications 📚 in international journals. Passionate about infrastructure durability and sustainability, he explores corrosion mechanisms, admixtures, and prefabricated building technologies. Dr. Wang continues to drive scientific progress in concrete technology, influencing structural resilience and green building practices globally 🌍.

PROFILE 

ORCID 

🔍 Summary of Suitability:

Dr. Chuanlin Wang combines top-tier academic credentials (Ph.D. from University of Leeds 🎓) with a proven track record as a Lecturer at Shantou University 🏫. His specialized focus on marine-durable concretes and advanced cementitious composites directly addresses critical infrastructure challenges 🌊🧱. Consistent success in securing competitive provincial grants 💰 and leading interdisciplinary teams 🤝 demonstrates both vision and leadership—key traits of an outstanding researcher.

📘 Education & Experience

🎓 Education:

  • 📘 Ph.D. in Civil Engineering – University of Leeds, UK (2012.9 – 2016.9)

  • 📗 B.A. in Civil Engineering – Dalian University of Technology, China (2007.9 – 2012.6)

🧑‍🏫 Professional Experience:

  • 🏫 Lecturer, Department of Civil and Environmental Engineering, Shantou University (2017.2 – Present)

Professional Development 🚀📖

Dr. Chuanlin Wang’s professional development reflects a deep dedication to both academic excellence and engineering innovation 🏗️. After earning his doctoral degree in the UK 🇬🇧, he returned to China to serve at Shantou University, where he nurtures talent and leads cutting-edge research in civil engineering 🏢. Over the years, he has built expertise in concrete performance improvement, particularly in challenging marine environments 🌊. His collaborative and interdisciplinary research includes state-funded projects focusing on sulphoaluminate cement, fiber-reinforced materials, and prefabricated structures 🧪. With numerous high-impact publications in international journals 📖, Dr. Wang remains engaged in knowledge dissemination and professional growth. His development is marked by a clear trajectory toward enhancing structural durability and resilience, while supporting sustainable infrastructure goals 🌱. Through ongoing grants, mentoring, and academic contributions, he continually upgrades his skills and impact in both educational and research domains 📚🧑‍🔬.

Research Focus 🔍🤖

Dr. Chuanlin Wang’s research focuses on advanced concrete materials within civil engineering 🧱. He is particularly interested in the behavior of concrete exposed to marine environments 🌊, where corrosion and durability are key challenges. His work explores the development of ultra-high-performance concrete (UHPC) and fiber-reinforced materials 🧵 that offer enhanced mechanical properties and longevity. Additionally, Dr. Wang is an expert in sulphoaluminate cement systems, which are known for rapid strength gain and environmental benefits ♻️. His recent studies investigate the impact of salt ions and seawater concentration on cement hydration and durability, making valuable contributions to marine construction technology 🚢. Prefabricated building systems 🏗️ and structural reinforcement techniques are also central to his interests, aligning with global efforts in sustainable and resilient infrastructure development. By integrating materials science and structural design, Dr. Wang advances the frontiers of construction engineering with a focus on performance, sustainability, and innovation 🌍.

Awards and Honors 🏆🎖️

🏅 Awards & Recognitions:

  • 🧪 2023: Grant from Guangdong Provincial Natural Science Foundation – ¥100,000

  • 🔬 2021: Awarded Guangdong Provincial Junior Innovative Talents Project – ¥30,000

  • 📑 Multiple publications in high-impact journals like Materials, Construction and Building Materials, and Journal of Materials in Civil Engineering

Publications & Citations 📚

  1. 📘 2025 | Seawater-Activated Mineral Synergy in Sulfoaluminate Cement: Corrosion Resistance Optimization via Orthogonal Design 🔬

  2. 📗 2024 |  Multi-technique Analysis of Seawater Impact on Calcium Sulphoaluminate Cement Mortar 🧪

  3. 📘 2025 |  Influence of Seawater and Salt Ions on the Properties of Calcium Sulfoaluminate Cement 🌊

  4. 📙 2016 | Retrofitting of Masonry Walls Using a Mortar Joint Technique; Experiments and Numerical Validation 🏗️

  5. 📕 2021 |  Influence of Steel Fiber Shape and Content on the Performance of Reactive Powder Concrete (RPC) 🧵

  6. 📘 2021 | Influence of Seawater Concentration on Early Hydration of CSA Cement – A Preliminary Study ⚗️

  7. 📘 2021 |Seismic Performance of Precast Columns with Two Different Connection Modes 🚧

🔍 Conclusion:

With a record of groundbreaking research, successful funding, and dedication to education and sustainability, Dr. Wang exemplifies the qualities of a “Best Researcher.” His work not only deepens scientific understanding but also delivers practical solutions for resilient, eco-conscious infrastructure 🌍🏆.

 

 

 

 

 

Wenhui Yao | Corrosion and protection | Women Researcher Award

Prof. Wenhui Yao | Corrosion and protection | Women Researcher Award

Professor at Chongqing University in China.

Dr. Wenhui Yao 🏅 is an Associate Professor at the College of Materials Science and Engineering, Chongqing University, China 🇨🇳. He holds a Ph.D. from Pusan National University 🎓 and has expertise in corrosion protection of Mg alloys, slippery liquid-infused porous surfaces, and superhydrophobic coatings 🔬. His research focuses on advanced surface treatments, including micro-arc oxidation and thermal evaporation. With numerous high-impact publications 📖, Dr. Yao contributes significantly to materials science. His work advances protective coatings and sustainable materials, shaping the future of corrosion-resistant technologies ⚙️.

Professional Profile

🔍 Summary of Suitability

  • Expert in Surface Engineering & Corrosion Protection 🔬 – Pioneering work in slippery liquid-infused porous surfaces, superhydrophobic coatings, and mesoporous materials.

  • Advancements in Protective Coatings ⚙️ – Developed innovative methods such as micro-arc oxidation, sputtering, and thermal evaporation to enhance material durability.

  • High-Impact Research 📖 – Published extensively in leading scientific journals, contributing to major advancements in materials science.

  • Sustainable Innovations 🌍 – Focuses on eco-friendly corrosion-resistant technologies and materials for water splitting, promoting green energy solutions.

Education 🎓

  • Ph.D. – College of Materials Science and Engineering, Pusan National University, South Korea 🇰🇷

  • Master’s – College of Materials Science and Engineering, Beihang University, China 🇨🇳

  • Bachelor’s – College of Mechanical and Electrical Engineering, China University of Petroleum ⚙️

Experience 🏅

  • Associate Professor – College of Materials Science and Engineering, Chongqing University, China 🇨🇳

  • Specializes in corrosion protection of Mg alloys, slippery liquid-infused porous surfaces, and superhydrophobic coatings 🔬

  • Expert in surface treatment techniques such as micro-arc oxidation, sputtering, thermal evaporation, and e-beam evaporation ⚙️

  • Published numerous high-impact research papers in materials science journals 📖

Professional Development 🚀📖

Dr. Wenhui Yao 🏅 has made significant strides in materials science, specializing in corrosion protection, superhydrophobic coatings, and surface engineering 🔬. As an Associate Professor at Chongqing University 🇨🇳, he actively advances research in slippery liquid-infused porous surfaces and mesoporous non-noble metal materials ⚙️. His expertise in micro-arc oxidation, sputtering, and thermal evaporation has led to groundbreaking innovations. With numerous high-impact publications 📖, he contributes to the scientific community through cutting-edge research and collaboration. Dr. Yao’s dedication to sustainable and protective coatings continues to drive advancements in materials engineering, making a lasting impact on corrosion-resistant technologies 🌍.

🔬 Research Focus

Dr. Wenhui Yao’s research focuses on materials science and surface engineering 🔬, particularly in corrosion protection and advanced coatings. His work on slippery liquid-infused porous surfaces and superhydrophobic coatings helps develop durable, self-cleaning, and anti-corrosive materials ⚙️. He also explores mesoporous non-noble metal materials for water splitting, contributing to sustainable energy solutions 🌍. His expertise includes micro-arc oxidation, sputtering, and thermal evaporation, which enhance material durability and functionality 🏗️. Dr. Yao’s innovations in protective coatings and anti-corrosion materials play a crucial role in industrial applications, improving the longevity of metal surfaces and promoting eco-friendly engineering solutions 🚀.

📚 Publications & Scientific Contributions 📝

📌 Superhydrophobic coatings for corrosion protection of magnesium alloys – W Yao, W Liang, G Huang, B Jiang, A Atrens, F Pan | Journal of Materials Science & Technology 52, 100-118 | 📅 2020 | 🔍 216 citations

📌 Micro‐arc oxidation of magnesium alloys: A review – W Yao, L Wu, J Wang, B Jiang, D Zhang, M Serdechnova, T Shulha, … | Journal of Materials Science & Technology 118, 158-180 | 📅 2022 | 🔍 158 citations

📌 A self-healing corrosion protection coating with graphene oxide carrying 8-hydroxyquinoline doped in layered double hydroxide on a micro-arc oxidation coating – Y Chen, L Wu, W Yao, Y Chen, Z Zhong, W Ci, J Wu, Z Xie, Y Yuan, F Pan | Corrosion Science 194, 109941 | 📅 2022 | 🔍 152 citations

📌 One-step in situ synthesis of graphene oxide/MgAl-layered double hydroxide coating on a micro-arc oxidation coating for enhanced corrosion protection of magnesium alloys – Y Chen, L Wu, W Yao, Z Zhong, Y Chen, J Wu, F Pan | Surface and Coatings Technology 413, 127083 | 📅 2021 | 🔍 104 citations

📌 Improved corrosion resistance of AZ31 Mg alloy coated with MXenes/MgAl-LDHs composite layer modified with yttrium – Y Wu, L Wu, W Yao, B Jiang, J Wu, Y Chen, X Chen, Q Zhan, G Zhang, … | Electrochimica Acta 374, 137913 | 📅 2021 | 🔍 95 citations

📌 Recent developments in slippery liquid-infused porous surface – W Yao, L Wu, L Sun, B Jiang, F Pan | Progress in Organic Coatings 166, 106806 | 📅 2022 | 🔍 76 citations

📌 Robust, self-cleaning, amphiphobic coating with flower-like nanostructure on micro-patterned polymer substrate – W Yao, L Li, OL Li, YW Cho, MY Jeong, YR Cho | Chemical Engineering Journal 352, 173-181 | 📅 2018 | 🔍 67 citations

📌 Development of metal-organic framework (MOF) decorated graphene oxide/MgAl-layered double hydroxide coating via microstructural optimization for anti-corrosion micro-arc … – Y Chen, L Wu, W Yao, J Wu, J Xiang, X Dai, T Wu, Y Yuan, J Wang, … | Journal of Materials Science & Technology 130, 12-26 | 📅 2022 | 🔍 58 citations

Conclusion

While Dr. Wenhui Yao is not eligible for the Women Researcher Award, his outstanding contributions to materials science and protective coatings make him an excellent candidate for a Best Researcher Award.

 

SATRANI Badr | Green chemistry | Chemical Scientist Award

Dr. SATRANI Badr | Green chemistry | Chemical Scientist Award

Researcher at Forest Research Centre, National Agency of Water and Forests in  Morocco.

🌿 Dr. Badr Satrani is a distinguished biochemist and researcher specializing in forest microbiology, phytochemistry, and aromatic and medicinal plants 🌱. Born in Casablanca, Morocco (1971), he earned his National Doctorate in Biochemistry 🎓 from the Faculty of Sciences Ben M’Sik, Casablanca. Since 1995, he has been a researcher at the Forestry Research Center (CRF), leading laboratories in Forest Microbiology and Biochemistry. Dr. Satrani has contributed extensively to scientific publications, patents, and international research projects 📚🔬. A mentor and collaborator, he plays a key role in advancing sustainable forestry and plant-based innovations 🌎✨.

Professional Profile

🔍 Summary of Suitability:

Dr. Badr Satrani is highly suitable for the Chemical Scientist Award due to his extensive contributions to phytochemistry, natural product research, and analytical chemistry. With a National Doctorate in Biochemistry, he has dedicated his career to studying medicinal and aromatic plants, bioactive compounds, and forest microbiology. His research integrates chemical analysis, sustainability, and pharmaceutical applications, aligning well with the objectives of the award.

🎓 Education:

  • 📜 National Doctorate in Biochemistry – Faculty of Sciences Ben M’Sik, Casablanca, Morocco (2006)

  • 🧪 Diploma of Advanced Studies (DESA) in Analytical Chemistry – Faculty of Sciences Ben M’Sik, Casablanca (2001)

  • 🧬 Bachelor’s Degree in General Biology – Faculty of Sciences Ain-Chock, Casablanca (1995)

  • 🔬 Baccalaureate in Experimental Sciences – Casablanca, Morocco (1990)

🏆 Professional Experience:

  • 🌳 Researcher at Forestry Research Center (CRF), Morocco (Since 1995)

  • 🏡 Head of Forest Microbiology & Biochemistry of Aromatic and Medicinal Plants Labs at CRF

  • 🌱 Member of Aromatic and Medicinal Plants Research Team – Forestry Research Center

  • 🦠 Expert in Forest Microbiology, Plant Cultivation, and Phytopathology

  • 💊 Specialist in Phytochemistry and Natural Product Research

  • 🎓 Research Team Member at Ibn Tofail University & Sidi Mohamed Ben Abdellah University

  • 📖 Co-director, Supervisor, and Examiner of Several Master’s & PhD Theses

  • 📑 Reviewer for National & International Scientific Journals

  • ✍️ Author & Co-Author of Numerous Scientific Publications & Patents

 

Professional Development 🚀📖

📚 Dr. Badr Satrani has continuously advanced his expertise in forest microbiology, phytochemistry, and sustainable plant research 🌱🔬. He has participated in international research projects 🌍, collaborated with leading universities and institutions, and contributed to scientific innovations in medicinal plants and bioactive compounds 💊. As a mentor and examiner 🎓, he has guided numerous Master’s and PhD candidates. His active role in scientific committees and editorial boards 📖 ensures quality research dissemination. Through workshops, training, and global conferences 🎤, he stays at the forefront of biochemical research, promoting eco-friendly solutions for forestry and health applications 🌿✨.

🔬 Research Focus

🔬 Dr. Badr Satrani focuses on forest microbiology, phytochemistry, and natural product research 🌱. His work explores medicinal and aromatic plants, studying their chemical composition, antimicrobial, antioxidant, and pharmacological properties 💊🦠. He specializes in essential oils, plant extracts, and bioactive compounds for health, agriculture, and environmental applications 🌿🌍. Additionally, he researches forest ecosystem conservation, plant-pathogen interactions, and sustainable biotechnology 🌳🔄. Through international collaborations, scientific publications, and patents, he contributes to innovative solutions in medicinal chemistry, green corrosion inhibitors, and plant-based pharmaceuticals 🏆📖. His studies support eco-friendly and sustainable scientific advancements ✨🌎.

🏆 Awards & Honors:

  • 🎖️ Recognized Researcher at Forestry Research Center (CRF), Morocco for contributions to forest microbiology and phytochemistry.

  • 🌍 Moroccan Coordinator for International Research Projects, including ONGUENT and PRAD, promoting medicinal plant research and development.

  • 📜 Contributor to Patented Innovations – Co-inventor of a resin-based green corrosion inhibitor patent (2020).

  • 📖 Editorial Board & Reviewer for high-impact international scientific journals.

  • 🎓 Academic Mentor & Examiner – Supervised numerous Master’s and PhD theses in biochemistry and natural products.

  • 🌿 Key Contributor to Aromatic & Medicinal Plant Research, leading global collaborations and scientific advancements.

📚 Publications & Scientific Contributions 📝

 

Assessing Trametes pini infection in Atlas cedar trees: Findings from acoustic tomography and biopolymer analysis (2025) – DOI: 10.1016/j.sciaf.2025.e02576 – 🪵​
  • Assessing the Optimal Antibacterial Action of Lavandula stoechas L., Thymus zygis L., and Eucalyptus camaldulensis Dehnh Essential Oils (2024) – DOI: 10.3390/life14111424 – 🧫​

  • Wood Tar Properties in Morocco: Yield, pH, and Density Analysis (2024) – DOI: 10.52711/0974-360X.2024.00608 – 🪵​RJPT Online

  • Optimization and antifungal efficacy against brown rot fungi of combined Salvia rosmarinus and Cedrus atlantica essential oils encapsulated in Gum Arabic (2023) – DOI: 10.1038/s41598-023-46858-7 – 🍃​

  • Simultaneous Hydrodistillation of Cedrus atlantica Manetti and Salvia rosmarinus Spenn: Optimization of Anti-Wood-Decay Fungal Activity Using Mixture Design Methodology (2023) – DOI: 10.1021/acsomega.3c01970 – 🌿​

  • Phytochemical analysis, antioxidant and antimicrobial activity of three Eucalyptus species essential oils from the Moroccan Maâmora Forest: Eucalyptus cladocalyx F.Muell, Eucalyptus grandis W.Hill ex Maiden and Eucalyptus botryoides Sm. (2023) – DOI: 10.1016/j.cdc.2023.101101 – 🌲​

  • Protection of C38 Steel in Acidic Solution by Eucalyptus Sidroxylon Essential Oil (2023) – DOI: 10.22034/abec.2023.703901 – 🛡️​

  • Plant sources, techniques of production and uses of tar: A review (2021) – DOI: 10.1016/j.jep.2021.114113 – 📜​

  • Ethnobotanical study of medicinal plants used in the Moroccan Sahara provinces (2018) – Published in International Journal of Innovation and Applied Studies – 🌵​RJPT Online+2ijias.issr-journals.org+2ijias.issr-journals.org+2

 

Venkatesan Srinivasan| Nanomaterials | Young Scientist Award

Dr. Venkatesan Srinivasan| Nanomaterials | Young Scientist Award

Assistant Professor at Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technologyin India.

Dr. V. Srinivasan 🎓 is an Assistant Professor of Chemistry at Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India. His research focuses on the synthesis, characterization, and optimization of nanoprobes and small organic probes for applications in sensors, biological systems, and solar cells 🌞🧪. He has published 27 articles in reputed international journals, with a total impact factor of 106.9 📖✨. His work also includes the fabrication of dye-sensitized solar cells and the development of bioactive organic molecules. With 562 citations 📊 and an H-index of 13, Dr. Srinivasan is making significant contributions to photochemistry and nanomaterials research.

Professional Profile

🔍 Summary of Suitability:

Dr. V. Srinivasan is an ideal candidate for the Young Scientist Award due to his exceptional contributions to a, photochemistry, and energy research 🔬🌞. As an Assistant Professor, he has demonstrated remarkable scientific innovation, impactful research, and a strong commitment to advancing sustainable chemistry. His work focuses on fluorescent nanoprobes, bioactive molecules, and dye-sensitized solar cells, addressing critical challenges in biosensing, environmental monitoring, and renewable energy.

🎓 Education:

  • Ph.D. in Chemistry 🧪 – Specialized in nanomaterials and photochemistry.

  • Master’s in Chemistry (M.Sc.) 📚 – Advanced studies in chemical sciences.

  • Bachelor’s in Chemistry (B.Sc.) 🏫 – Foundation in fundamental chemistry concepts.

💼 Experience:

  • Assistant Professor 👨‍🏫 – Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai.

  • Researcher in Nanomaterials 🔬 – Expertise in synthesizing and characterizing nanoprobes for diverse applications.

  • Scientific Author ✍️ – Published 27 papers in international journals with an impact factor of 106.9.

  • Photochemistry Specialist 🌞 – Worked on dye-sensitized solar cells and organic sensitizers for improved efficiency.

  • Reviewer & Collaborator 🤝 – Engaged in 5 research collaborations and contributed to journal revisions.

 

Professional Development 🚀📖

Dr. V. Srinivasan 🎓 has continuously enhanced his expertise through extensive research and collaborations 🤝. As an Assistant Professor 👨‍🏫, he has contributed to the advancement of nanoprobes, bioactive molecules, and photochemistry 🌞. His professional growth includes publishing 27 high-impact journal articles 📖, achieving an H-index of 13 📊, and securing 562 research citations. He actively engages in interdisciplinary collaborations, refining innovative methodologies in nanotechnology 🔬. A dedicated member of IAENG (504612) 🏅, he stays updated with emerging trends. His work in fluorescent nanomhttps://chemicalscientists.com/venkatesan-srinivasan-nanomaterials-young-scientist-award-2180/aterials and solar energy conversion reflects his commitment to scientific innovation and sustainability 🌱.

Research Focus 🔍🤖

Dr. V. Srinivasan’s research revolves around nanomaterials and photochemistry 🔬🌞, focusing on the synthesis and characterization of fluorescent nanoprobes for applications in biosensors, solar cells, and environmental monitoring 🧪🌍. His work includes developing aggregation-induced emissive (AIE) nanodots for bioimaging 🧬, graphene oxide dots (GO dots) for explosive detection 💥, and carbon nanocubes (CNCs) for antibiotic sensing 💊. Additionally, he explores dye-sensitized solar cells (DSSC) with novel organic sensitizers to enhance efficiency ⚡. His recent focus is on synthesizing bioactive organic molecules and nanomaterials for biomedical applications, making significant contributions to sustainable and innovative chemistry 🌱🧑‍🔬.

🏆 Awards & Honors:

  • Young Scientist Award Nominee 🏅 – Recognized for contributions in nanomaterials and photochemistry.

  • Published in High-Impact Journals 📖 – 27 research papers with a total impact factor of 106.9.

  • Research Citations Achievement 📊 – 562 citations, H-index: 13, and i10-index: 14.

  • Active Research Collaborator 🤝 – Engaged in 5 interdisciplinary collaborations.

  • Professional Membership 🎓 – Member of IAENG (504612) for engineering and research excellence.

  • Expert Reviewer 📝 – Contributed to 23 journal revisions in reputed international publications.

Publication Top Notes:

📗 Green synthesis of zinc oxide nanoparticles using Brassica oleracea var. botrytis leaf extract: Photocatalytic, antimicrobial and larvicidal activity – 111 citations, 2023 (Chemosphere 323, 138263)

💡 Unravelling the effect of anchoring groups on the ground and excited state properties of pyrene using computational and spectroscopic methods – 58 citations, 2016 (PCCP 18(19), 13332-13345)

🔬 A simple and ubiquitous device for picric acid detection in latent fingerprints using carbon dots – 48 citations, 2020 (Analyst 145(13), 4532-4539)

🦠 Pyrene based Schiff bases: Synthesis, crystal structure, antibacterial and BSA binding studies – 46 citations, 2021 (JMS 1225, 129153)

♻️ Fuel waste to fluorescent carbon dots and its multifarious applications – 42 citations, 2019 (Sensors and Actuators B: Chemical 282, 972-983)

💠 Pyrene based D–π–A architectures: synthesis, density functional theory, photophysics and electron transfer dynamics – 38 citations, 2017 (PCCP 19(4), 3125-3135)

🌐 Nanostructured graphene oxide dots: synthesis, characterization, photoinduced electron transfer studies, and detection of explosives/biomolecules – 29 citations, 2018 (ACS Omega 3(8), 9096-9104)

🧬 Pyrene-based prospective biomaterial: In vitro bioimaging, protein binding studies and detection of bilirubin and Fe³⁺ – 28 citations, 2019 (SAA: Molecular and Biomolecular Spectroscopy 221, 117150)

AIE nanodots obtained from a pyrene Schiff base and their applications – 28 citations, 2017 (ChemistrySelect 2(4), 1353-1359)

⚛️ A combined experimental and computational characterization of D–π–A dyes containing heterocyclic electron donors – 24 citations, 2017 (JPPB A: Chemistry 332, 453-464)

🔋 A diminutive modification in arylamine electron donors: Synthesis, photophysics and solvatochromic analysis–towards the understanding of dye-sensitized solar cell performances – 20 citations, 2015 (PCCP 17(43), 28647-28657)

🩺 Evaluation of the anti-rheumatic properties of thymol using carbon dots as nanocarriers on FCA induced arthritic rats – 15 citations, 2021 (Food & Function 12(11), 5038-5050)

🧪 Facile synthesis of carbon nanocubes and its applications for sensing antibiotics – 14 citations, 2020 (JPPB A: Chemistry 403, 112855)

🔦 Light induced behavior of xanthene dyes with benzyl viologen – 11 citations, 2014 (Synthetic Metals 196, 131-138)

🧬 Miniscule modification of coumarin-based potential biomaterials: Synthesis, characterization, computational and biological studies – 7 citations, 2023 (JPPB A: Chemistry 445, 115044)

🧑‍💻 Computational, reactivity, Fukui function, molecular docking, and spectroscopic studies of a novel (E)-1-Benzyl-3-(2-(Pyrindin-2-yl) Hydrazono) Indolin-2-One – 6 citations, 2024 (Polycyclic Aromatic Compounds 44(9), 6263-6283)

🧲 Synthesis, crystal structure and protein binding studies of a binuclear copper (I) complex with triphenylphosphine-based dithiocarbazate – 6 citations, 2023 (Inorganic Chemistry Communications 157, 111195)

⚗️ A fluorescent chemosensor for selective detection of chromium (III) ions in environmentally and biologically relevant samples – 4 citations, 2024 (SAA: Molecular and Biomolecular Spectroscopy 316, 124286)

🧪 A comprehensive investigation of ethyl 2-(3-methoxybenzyl) acrylate substituted pyrazolone analogue: Synthesis, computational and biological studies – 4 citations, 2024 (Chemical Physics Impact 8, 100531)

🌱 Biomass-derived potential nano-biomaterials: Protein binding, anti-biofilm activity and bio-imaging – 3 citations, 2024 (JMS 1300, 137155)

🎯 Conclusion:

Dr. V. Srinivasan’s research excellence, scientific impact, and innovative contributions make him highly deserving of the Young Scientist Award. His pioneering work in nanomaterials, biosensors, and renewable energy showcases his potential as a leading young researcher shaping the future of scientific advancements. 🚀🔬

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

silvana alfei | Nanomaterial | Award for Scientific Contributions in Chemistry

Prof. Dr. silvana alfei | Nanomaterial | Award for Scientific Contributions in Chemistry

Permanent researcher, lecturer of Organic Chemistry at University of Genoa in Italy.

🔬 Silvana Alfei is a professor and researcher in Organic Chemistry at the University of Genoa, Italy 🇮🇹. She holds a national scientific qualification and has served as a commissioner in the Department of Pharmacy. Since 2006, she has led the Organic Chemistry I course (CTF) and has previously taught Organic Chemistry (Pharmacy). Her research focuses on biodegradable dendrimers for nanomedicine, antibacterial and antitumor macromolecules, and nano-vesicles with therapeutic applications. 📚 With an H-index of 25, 111 publications, and over 1,998 citations, she actively contributes to high-impact journals and serves as an editor and reviewer in renowned scientific journals. ✨

Professional Profile

🔍 Summary of Suitability:

Silvana Alfei is a distinguished researcher in organic chemistry, with impactful contributions in nanomedicine, biodegradable dendrimers, and antibacterial and antitumor macromolecules. Her extensive publication record, editorial roles, and international collaborations make her a strong candidate for the Award for Scientific Contributions in Chemistry.

🎓 Education & Experience of Silvana Alfei

🎓 Education

  • Ph.D. in Organic Chemistry 🧪 – University of Genoa, Italy 🇮🇹

  • Master’s Degree in Chemistry 🏅 – University of Genoa, Italy

💼 Professional Experience

  • Professor & Researcher in Organic Chemistry 🔬 – University of Genoa

  • National Scientific Qualification (ASN) 🏆 – Recognized for second-tier professorship, meeting first-tier criteria

  • Commissioner 🏛️ – Department of Pharmacy, University of Genoa

  • Course Leader for Organic Chemistry I (CTF) 📖 – Since 2006

  • Former Course Leader for Organic Chemistry (Pharmacy) 🎓 – (2019-2021)

  • Guest Editor & Editorial Board Member 📚 – IJMS & Nanomaterials (MDPI)

  • Active Reviewer ✍️ – Conducted over 216 peer reviews

  • Academic Editor 🏅 – Contributed to high-impact scientific journals

 

Professional Development 🚀📖

Silvana Alfei has continuously expanded her expertise in organic chemistry 🧪 through research, teaching, and editorial roles. As a professor and researcher 🔬 at the University of Genoa, she has developed innovative biodegradable dendrimers for nanomedicine 🏥 and antibacterial and antitumor macromolecules. She actively contributes to the scientific community as a Guest Editor 📚 and Editorial Board Member for prestigious journals. With over 216 peer reviews ✅, she ensures research quality. Her collaborations with national and international 🌍 scientists enhance her contributions, making her a key figure in organic chemistry and pharmaceutical sciences. 🚀

Research Focus 🔍🤖

Silvana Alfei’s research revolves around organic chemistry 🧪 with applications in nanomedicine 🏥 and pharmaceutical sciences 💊. She specializes in the synthesis of biodegradable dendrimers 🌱 for drug delivery, antibacterial and antitumor macromolecules 🦠, and cationic polymers for biomedical and environmental use 🌍. Her work extends to crosslinked hydrogels 💧 and nano-vesicles with therapeutic effects. Through cutting-edge molecular design 🔬, she contributes to advanced drug formulations and targeted therapies. Her interdisciplinary research enhances biomedical applications, making significant strides in pharmaceutical innovation 🚀 and sustainable chemistry. ♻️

 

🏆 Awards & Honors of Silvana Alfei

  • National Scientific Qualification (ASN) – Second Tier 🎓🏅 (Meeting First-Tier Requirements)

  • Commissioner at the Department of Pharmacy, University of Genoa 🏛️

  • Editorial Board Member 📚 – International Journal of Molecular Sciences (IJMS) & Nanomaterials (MDPI)

  • Guest Editor of Special Issues ✍️ – High-impact scientific journals

  • Recognized Peer Reviewer ✅ – Over 216 scientific reviews for leading journals

  • International Collaborations 🌍 – Contributing to global research advancements in organic chemistry and nanomedicine

Publication Top Notes:

📘 Last Fifteen Years of Nanotechnology Application with Our Contribute – S. Alfei, G. Zuccari (❌ No citations, 📅 Year not available)

🧠 Ellagic Acid: A Green Multi-Target Weapon That Reduces Oxidative Stress and Inflammation to Prevent and Improve Alzheimer’s Disease – S. Alfei, G. Zuccari (🔢 1 citation, 📅 Year not available)

🧪 Pivotal Contribute of EPR-Characterized Persistent Free Radicals in the Methylene Blue Removal by a Bamboo-Based Biochar-Packed Column Flow System – F. Zanardi et al. (🔢 4 citations, 📅 2024)

🦠 Strongly ROS-Correlated, Time-Dependent, and Selective Antiproliferative Effects of Synthesized Nano Vesicles on BRAF Mutant Melanoma Cells and Their Hyaluronic Acid-Based Hydrogel Formulation – S. Alfei et al. (🔢 1 citation, 📅 2024)

🧬 The Remarkable and Selective In Vitro Cytotoxicity of Synthesized Bola-Amphiphilic Nanovesicles on Etoposide-Sensitive and -Resistant Neuroblastoma Cells – S. Alfei et al. (🔢 3 citations, 📅 2024)

🦠 Synthesized Bis-Triphenyl Phosphonium-Based Nano Vesicles Have Potent and Selective Antibacterial Effects on Several Clinically Relevant Superbugs – S. Alfei et al. (🔢 5 citations, 📅 2024)

Reactive Oxygen Species (ROS)-Mediated Antibacterial Oxidative Therapies: Available Methods to Generate ROS and a Novel Option Proposal – S. Alfei et al. (🔢 37 citations, 📅 Year not available)

💊 Attempts to Improve Lipophilic Drugs’ Solubility and Bioavailability: A Focus on Fenretinide – S. Alfei, G. Zuccari (🔢 5 citations, 📅 Year not available)

🩹 Synthesis and Physicochemical Characterization of Gelatine-Based Biodegradable Aerogel-like Composites as Possible Scaffolds for Regenerative Medicine – S. Alfei et al. (🔢 5 citations, 📅 2024)

🌱 Biochar-Derived Persistent Free Radicals: A Plethora of Environmental Applications in a Light and Shadows Scenario – S. Alfei, O. Ginoble Pandoli (🔢 8 citations, 📅 Year not available)

🎯 Conclusion:

Silvana Alfei’s innovative research, scientific leadership, and global contributions align perfectly with the Award for Scientific Contributions in Chemistry. Her dedication to advancing drug delivery systems, nanomedicine, and biomaterials makes her a highly deserving candidate for this recognition. 🏆✨

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P. ABISHAKE DAVID | Nanomaterials | Best Researcher Award

 

Mr. P. ABISHAKE DAVID | Nanomaterials | Best Researcher Award

Ph.D. Research Scholar at T.B.M.L. College, Porayar in India.

P. Abishake David 🎓 is a dedicated Ph.D. Research Scholar at T.B.M.L. College, Porayar (affiliated with Annamalai University), specializing in the development of metal-organic frameworks (MOFs) for electrochemical energy storage ⚡. With a first-class distinction in his postgraduate studies 🏅, he has successfully synthesized Cu-MOF and Co-MOF for supercapacitor applications, utilizing advanced techniques such as cyclic voltammetry, UV-Vis, FT-IR, and XPS 🧪. As a reviewer for the Journal of Inorganic and Organometallic Polymers and Materials and an active conference organizer 🌐, he is committed to advancing sustainable energy solutions 🔋 through innovative materials research.

Professional Profile
Suitability for the Researcher Award

P. Abishake David 🎓 is highly suitable for the Best Researcher Award due to his focused and innovative contributions to the field of Electrochemical Energy Storage 🔋. His research specializes in the synthesis and electrochemical characterization of Metal-Organic Frameworks (MOFs) 🧪, particularly Cu-MOF and Co-MOF, aimed at enhancing supercapacitor performance ⚡. He has applied advanced techniques like Cyclic Voltammetry, Galvanostatic Charge-Discharge, and Impedance Spectroscopy 🔬 to optimize material properties for sustainable energy solutions 🌱.

🎓 Education

  • ✅ Completed Postgraduate (PG) in Physical Sciences with First Class and Distinction 🏅
  • ✅ Qualified Ph.D. entrance exams at Bharathidasan University and Annamalai University 📜
  • 🎯 Currently pursuing Ph.D. Research at T.B.M.L. College, Porayar (Affiliated to Annamalai University) 🏛️
  • 📖 Preparing for CSIR NET Exam in Physical Science 🧠

💼 Experience

  • 🧪 Research focused on Metal-Organic Frameworks (MOFs) for Electrochemical Energy Storage 🔋
  • 🧰 Hands-on experience with techniques like UV-Vis, FT-IR, FT-Raman, XPS, Cyclic Voltammetry, Galvanostatic Charge-Discharge, and Impedance Spectroscopy 🔬
  • ⚡ Successfully synthesized and optimized Cu-MOF and Co-MOF for supercapacitor applications 🔄
  • 🌍 Served as a Technical Member in organizing an International Conference 📅
  • 📝 Reviewer for the Journal of Inorganic and Organometallic Polymers and Materials 📚
  • 🤝 Collaborated with Dr. Manikandan Ayyar from KAHE, Coimbatore 🔗

 

Professional Development 🚀📖

P. Abishake David 🎓 continuously advances his professional journey through dedicated research in Metal-Organic Frameworks (MOFs) for energy storage 🔋. He has gained hands-on expertise in advanced analytical techniques 🧪 such as UV-Vis, FT-IR, XPS, and Cyclic Voltammetry to enhance supercapacitor performance ⚡. Actively preparing for the CSIR NET exam 📖, he aims to strengthen his academic credentials while contributing innovative solutions to sustainable energy 🌍. Serving as a reviewer 📝 and participating in international conferences 🌐, Abishake builds collaborations 🤝 and sharpens his skills, remaining committed to pushing the boundaries of electrochemical materials research 🔬.

 

Research Focus 🔍🤖

P. Abishake David 🎓 focuses his research on the Electrochemical Energy Storage category 🔋, specializing in the synthesis and optimization of Metal-Organic Frameworks (MOFs) 🧪. His work targets developing high-performance materials like Cu-MOF and Co-MOF to improve supercapacitor efficiency ⚡. Using advanced techniques such as Cyclic Voltammetry, Galvanostatic Charge-Discharge, and Impedance Spectroscopy 🔬, he studies material behavior for sustainable energy applications 🌱. His research area extends to Nanomaterials, Graphene, and 2D Materials 🌐, with the goal of creating innovative solutions for next-generation power storage technologies 🚀, supporting the global demand for renewable energy 🌍.

🏆 Awards & Honors

  • 🥇 Award Nominee for Best Researcher Award by Chemicalscientists.com 🧪
  • 🥈 Award Nominee for Best Research Scholar Award 🎓
  • 🌐 Served as a Technical Member in organizing an International Conference on advanced research topics 📅
  • ✍️ Appointed as a Reviewer for the Journal of Inorganic and Organometallic Polymers and Materials 📚

 

Publication Top Notes:

📄 “A study on the facile synthesis of Cu-influenced organic framework and their characteristic properties”M Jothibas, PA David, S Srinivasan, P Emerson, A Mathivanan | 🗞️ Journal of Molecular Structure 1320, 139429 | 📅 2025 | 🔍 Cited by: 1

📄 Publication: “Electrochemical Performance of Metal-Organic Frameworks for Supercapacitor Applications” 🧪 | Published in: 2023 📅 | Cited by: 1 🔍

📌 Conclusion:

Considering his specialized research in advanced energy materials, early but impactful publication record, peer-review contributions, and active participation in international academic activities 🌍, P. Abishake David is a deserving candidate for the Best Researcher Award 🏅. His work directly supports global efforts toward sustainable and efficient energy technologies, reflecting both innovation and societal relevance 🌱⚡.