Hong Seung Mo | Polymer chemistry | Best Researcher Award

Dr. Hong Seung Mo | Polymer chemistry | Best Researcher Award

SHINA T&C,  R&D center, South Korea

Dr. Seung-Mo Hong is a highly experienced and innovative R&D professional in the field of polymer engineering, with a dynamic career spanning over two decades. Based in Incheon, South Korea, he holds a Ph.D. in Polymer Engineering from Dankook University, where he explored multifunctional thiol hardeners and their thiol-epoxy curing behavior. He also earned his M.S. and B.S. in Chemical Engineering from Soongsil University. Throughout his distinguished career, Dr. Hong has led groundbreaking research and product development in UV-curable polymers, optical materials, and quantum dot technologies. He has worked with leading organizations like Shin-A T&C, SKC Co., Ltd., and Dongwoo Fine-Chem, spearheading innovations in display materials and adhesives. With over 108 patents and impactful publications, Dr. Hong continues to contribute to advanced material science. His expertise in synthesis, commercialization, and product innovation makes him a driving force in next-generation polymer technologies.

Professional Profile

Education 

Dr. Seung-Mo Hong earned his Ph.D. in Polymer Engineering from Dankook University (2021–2023), where he focused on multifunctional thiol hardeners and thiol-epoxy curing behaviors, graduating with a GPA of 4.37/4.50. Prior to this, he completed his M.S. in Chemical Engineering at Soongsil University (1999–2001) with a thesis on photosensitive polyimides and a GPA of 3.63/4.00. His foundational education was in Chemical Engineering, also at Soongsil University, where he completed his B.S. between 1995 and 1999. Throughout his academic journey, Dr. Hong developed a strong foundation in polymer chemistry, synthesis techniques, and structure-property relationships. His advanced studies focused on both industrial and functional polymers, aligning academic research with practical applications in optical materials and coatings. The rigor and depth of his academic training have equipped him to lead innovation across various industrial R&D platforms and contribute extensively to peer-reviewed scientific literature.

Experience 

Dr. Hong has amassed over 20 years of experience across top-tier R&D institutions and companies. Since 2018, he has led R&D at Shin-A T&C, spearheading innovations in polythiol synthesis, UV inks, and quantum dot optical films. At SKC (2015–2018), he developed multifunctional thiols and high-refractive-index resins for optical lenses. Earlier, he held a pivotal role at Dongwoo Fine-Chem (2006–2015), leading the development of hard coatings, flexible films for OLED, and photosensitive oligomers. His international experience includes a research assignment at Sumitomo Chemical in Japan, where he focused on anti-static and anti-fouling coatings. Beginning his career at SSCP (AkzoNobel) and LG Electronics, Dr. Hong specialized in urethane acrylates and BLU prism sheets. His career reflects deep expertise in polymer synthesis, process scale-up, and product commercialization across diverse applications such as displays, adhesives, and coatings, making him a versatile and strategic leader in the field of advanced materials.

Professional Development

Dr. Seung-Mo Hong has consistently pursued professional development through diverse leadership and technical roles across Korea and Japan. His strengths lie in R&D management, commercialization of high-tech polymer systems, and intellectual property strategy. He is proficient in reverse engineering, defect analysis, VOC resolution, and patent mapping. He has mentored numerous junior researchers and managed large-scale research projects. Notably, his work at Shin-A T&C and SKC led to market-ready innovations in quantum dot resins and multifunctional thiols. Dr. Hong is also fluent in Korean, business-level Japanese, and conversational English, enhancing his collaborative capabilities in multinational settings. He is skilled in using Minitab for statistical analysis and is Six Sigma Green Belt certified. His contributions to the polymer industry are reinforced by 108+ patents and multiple international publications, reflecting his commitment to ongoing innovation and excellence in advanced materials science.

Skills & Expertise

Dr. Seung-Mo Hong possesses a comprehensive skill set centered on advanced polymer science and industrial application. His core competencies include the synthesis and design of UV-curable oligomers and monomers, sulfur-containing compounds, thermoset polymers, and photosensitive materials. He is highly proficient in process development, including commercialization strategies, scale-up procedures, and optimization of production techniques for optical resins and films. Dr. Hong’s material application expertise spans a wide range of products, such as optical films for displays, high-refractive-index lenses, hard coatings, adhesives, and quantum dot-based materials. His analytical capabilities enable him to reverse engineer competitor products, resolve customer complaints, and conduct root cause analysis. Additionally, he is skilled in patent mapping, clearance, and intellectual property risk mitigation. As a seasoned R&D leader, he has mentored junior researchers and led multidisciplinary teams. He is fluent in Korean, professionally proficient in Japanese, and conversational in English, and he is adept at using Minitab and Microsoft Office tools.

Resarch Focus

Dr. Seung-Mo Hong’s research focuses on polymer synthesis, especially UV-curable oligomers and monomers, sulfur-based functional materials, and optical polymers for high-performance applications. His work delves into the development of thiol-based curing systems, high-refractive-index resins, and photosensitive materials for displays and electronics. He has pioneered methods for synthesizing polythiols, epoxy acrylates, and quantum dot UV inks, which have significantly impacted the optical film and display industries. His industrial research encompasses materials for hard coatings, adhesives, lens materials, and flexible electronics, bridging academic precision with commercial applicability. Hong’s approach includes novel chemical formulations, reaction optimization, and product durability improvements. He aligns his research with market trends in displays, wearables, and energy-efficient materials. Through an interdisciplinary lens, Dr. Hong advances polymer technology that underpins next-generation electronic and photonic devices.

Awards & Recognitions

Dr. Seung-Mo Hong’s exceptional contributions to polymer chemistry and industrial innovation have been widely recognized. He received the prestigious Invention King Award from SKC in both 2017 and 2018, honoring his groundbreaking developments in multifunctional thiols and optical materials. While at Dongwoo Fine-Chem, he was honored with the Most Patent Applications Award in 2011, highlighting his prolific output in material innovations, followed by the Excellent Employee Award in 2009. These accolades reflect his ability to transform scientific ideas into commercial products and his dedication to research excellence. In addition to these recognitions, Dr. Hong holds over 100 registered domestic patents and several international patents, demonstrating his continuous impact on the global materials science community. His Six Sigma Green Belt certification further attests to his proficiency in process optimization and quality control, solidifying his reputation as a visionary and highly effective research leader in advanced polymer materials.

Publication Top Notes 

Title: Optimization of synthetic parameters of high purity trifunctional mercaptoesters and their curing behavior for the thiol–epoxy click reaction
Authors: Seung-Mo Hong, Oh Hwan Kim, Seung Hwan Hwang
Year: 2021
Citations: 8+

Title: Synthesis and Characterization of Multifunctional Secondary Thiol Hardeners Using 3‑Mercaptobutanoic Acid and Their Thiol−Epoxy Curing Behavior
Authors: Seung-Mo Hong, Seung Hwan Hwang
Year: 2022
Citations: 10+

Title: Enhancing the shelf life of epoxy monoacrylate resins using acryl phosphate as a reactive additive
Authors: Seung-Mo Hong, Oh Hwan Kim, Seung Hwan Hwang
Year: 2022
Citations: 6+

Title: Synthesis and characteristics of novel 2-hydroxy-3-mercaptopropyl terminated polyoxypropylene glyceryl ether as an epoxy hardener of epoxy-based adhesives
Authors: Seung-Mo Hong, Seung Hwan Hwang
Year: 2022
Citations: 4+

Title: Chemistry of Polythiols and Their Industrial Applications
Authors: Seung-Mo Hong, Oh Hwan Kim, Seung Hwan Hwang
Year: 2024
Citations: 1+

Title: Synthesis of 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene di(mercaptopropionate) for high-luminance and refractive prism sheets
Authors: Seung-Mo Hong, Oh Hwan Kim, Seung Hwan Hwang
Year: 2024
Citations: 0 (new)

Title: Synthesis and Characterization of UV-Curable Resin with High Refractive Index for a Luminance-Enhancing Prism Film
Authors: J.H. Song, Seung-Mo Hong, S.K. Park, H.K. Kwon, S.H. Hwang, J.M. Oh, S.M. Koo, G.W. Lee, C.H. Park
Year: 2025
Citations: 0 (new)

Title: Synthesis and characterization of hyperbranched thiol hardener and their curing behavior in thiol–epoxy
Authors: J.H. Song, Seung-Mo Hong, S.K. Park, H.K. Kwon, S.H. Hwang, J.M. Oh, S.M. Koo, G.W. Lee, C.H. Park
Year: 2025
Citations: 0 (new)

Conclusion:

Dr. Hong’s career demonstrates a consistent trajectory of innovation, problem-solving, and technology development in polymer and materials engineering. His cutting-edge research, industrial application success, and outstanding patent portfolio make him a compelling and deserving recipient of the Best Researcher Award. His work not only advances scientific understanding but also significantly contributes to the commercialization of high-performance materials, impacting industries such as display technology, electronics, and optical coatings.

Rachid AZIAM | Polymer Chemistry | Best Researcher Award

Dr.Rachid AZIAM | Polymer Chemistry | Best Researcher Award

Academician/Research Scholar , Ibnou Zohr University in  Morocco.

🔬 Short Biography 🌿💊📚

Dr. Rachid Aziam 🇲🇦 is a Moroccan researcher specializing in physical chemistry and environmental applications. 🎓 He holds a Ph.D. in Physical Chemistry (2021) from the Faculty of Sciences, Ibn Zohr University, Agadir. Prior to that, he earned two Master’s degrees — one in Water Chemistry (Oujda, Morocco) and another in Water Treatment, Science and Technology (Lille, France) — along with a Bachelor’s in Chemistry and a DEUG diploma. 🌍 His teaching career includes appointments at the Faculty of Sciences in Agadir and the Specialized Institute of Public Works. Dr. Aziam has undertaken multiple prestigious research internships across Morocco, France, and Romania. 🧪 His work focuses on the synthesis and characterization of eco-friendly biomaterials for environmental remediation. As a published author in Q1-ranked journals, book chapters, and international books, he is recognized for his innovation in green chemistry. 🌿 He is also an active reviewer for international scientific journals and conferences. 🏅

PROFILE 

GOOGLE SCHOLAR

Scopus 

Orcid 

🔍 Summary of Suitability:

Dr. Rachid Aziam is an accomplished researcher in the field of Physical Chemistry with a dedicated focus on environmental remediation and sustainable material science 🌿. Holding a Ph.D. from Ibn Zohr University, he has consistently demonstrated academic rigor, international collaboration, and impactful scientific contributions. His research spans the development of bio-nanocomposites, adsorption of dyes and pollutants, and AI-enhanced modeling techniques for wastewater treatment. His scholarly output includes over 20 peer-reviewed journal articles, many published in Q1 journals, along with international book chapters and a scientific book. With citations exceeding 400+, his work is widely recognized and respected in the scientific community 📚.

🔹 Education & Experience 

Dr. Rachid Aziam’s academic journey began with a DEUG in Chemistry (2010-2011) and culminated in a Ph.D. in Physical Chemistry (2015-2021) from Ibn Zohr University, Agadir 📘. He obtained a Bachelor’s in Chemistry (2011-2012) and two Master’s degrees — one in Water Chemistry from Oujda (2012-2014) and another in Water Treatment from Lille, France (2013-2014) 🌍. His professional experience includes teaching assignments as a Temporary Associate Professor at the Faculty of Sciences in Agadir (2016-2017) and at the Specialized Institute of Public Works (2024-2025), covering subjects like chemical kinetics, thermodynamics, and water treatment 🧪. His extensive practical teaching and laboratory involvement, including plant visits, demonstrate his strong commitment to both theoretical and applied chemistry 👨‍🏫. He has participated in various internships in Morocco, Romania, and France, focusing on wastewater treatment and the development of novel bio-nanocomposites for environmental applications 🌱.

🔹 Professional Development 

Dr. Rachid Aziam has advanced his professional expertise through rigorous research internships and collaborative international projects 🌍. He conducted postdoctoral research at the National University of Science and Technology Politehnica Bucharest (2023, 2025) under Professor Daniela Simina Stefan, working on eco-engineered biopolymer–clay composites using statistical and AI modeling 🤖. His Ph.D. research at Ibn Zohr University emphasized the valorization of local natural materials for dye adsorption from wastewater 💧. Additionally, he interned at industry-relevant institutions like SOTRALENG SARL and the Solid Waste Treatment Center in Oujda, Morocco 🏭. He actively contributes as a reviewer and scientific committee member for international journals and conferences, including CIDEEV 2024 📑. As an author of several high-impact journal articles and co-author of an academic book, Dr. Aziam’s professional trajectory demonstrates continuous engagement in applied environmental research and academia 📘, establishing him as a rising expert in sustainable material innovation and water purification 🌿.

🏅 Awards and Recognitions

  • 🧪 Certificate of Reviewing – Journal of Saudi Chemical Society

  • 🏅 Certificate of Excellence in Reviewing – Asian Journal of Research in Animal and Veterinary Sciences

  • 🥇 Certificate of Excellence in Reviewing – International Research Journal of Pure and Applied Chemistry

  • 🧠 Certificate of Excellence in Peer-Reviewing – Research and Applications Towards Mathematics and Computer Science

  • 🌍 Scientific Committee Member – International Conference on Water Depollution and Green Energy (CIDEEV2024)

🔬 Research Focus

Dr. Rachid Aziam’s research primarily falls within the realm of Environmental Physical Chemistry and Sustainable Materials Science 🧪🌍. His work explores the synthesis and application of eco-friendly bio-nanocomposites — particularly those derived from natural polymers and clays — for the adsorption and removal of pollutants such as azo dyes, phosphate ions, nitrates, and heavy metals from wastewater 💧. With a strong foundation in adsorption kinetics, isotherms, thermodynamic studies, and fixed-bed systems, his contributions aim to solve real-world environmental challenges using low-cost, renewable resources 🌱. He frequently applies modeling techniques, including Artificial Intelligence (AI) and Response Surface Methodology (RSM), to optimize the efficiency of novel adsorbents 🤖📊. His interdisciplinary approach merges chemistry, environmental engineering, and nanotechnology, positioning him at the forefront of green chemistry innovation 🌿. His research significantly impacts wastewater treatment technologies and environmental sustainability goals ♻️.

Publications & Citations 📚

📘 Synthesis, characterization, and comparative study of MgAl-LDHs…Environmental Science and Pollution Research (2020) – Cited by: 102 📈
📗 Kinetic modeling… on Carpobrotus edulis plantEuropean Physical Journal Special Topics (2017) – Cited by: 42 🔬
📙 Adsorption of Crystal Violet onto Carpobrotus edulisMaterials Today: Proceedings (2021) – Cited by: 31 💧
📕 Synthesis of LDH/Alginate composite beads…Chemical Papers (2023) – Cited by: 27 🧪
📒 Factors controlling the adsorption of acid blue 113…Arabian Journal of Geosciences (2016) – Cited by: 26 🌿
📘 Adsorption of metal ions on alginate-clay bio-nanocompositeNanomaterials (2024) – Cited by: 19 🧲
📗 Increasing Methylene Blue Adsorption Efficiency…Chemistry Africa (2021) – Cited by: 19 🧼
📙 Crystal violet dye adsorption on macroalgae…Bioresource Technology (2024) – Cited by: 18 🪸
📕 Macroalgal biomass for removal of organic dyes…Springer Book Chapter (2021) – Cited by: 12 📖
📒 Acid blue 113 removal by corallina officinalis algaE3S Web of Conferences (2021) – Cited by: 12 🧃
📘 Hybrid clay@Fe3O4 for acid blue113 sequestrationInt. J. of Environmental Sci. and Tech. (2024) – Cited by: 10 🧱
📗 Alginate–Moroccan Clay bio-nanocomposite for ion removalPolymers (2023) – Cited by: 8 🧫

🔍 Conclusion:

In conclusion, Dr. Rachid Aziam’s interdisciplinary expertise, proven research excellence, and impactful contributions to environmental chemistry and nanomaterials make him an ideal candidate for the Best Researcher Award 🥇. His work aligns perfectly with global sustainability goals, and his innovations have real-world applicability, positioning him as a leading figure in his domain 🌍.

Sergey Valeryevich Dezhurov | Materials Chemistry | Best Researcher Award

Dr.Sergey Valeryevich Dezhurov | Materials Chemistry | Best Researcher Award

Research Scientist at Prokhorov General Physics Institute of the Russian Academy of Sciences in  Russia.

🔬 Short Biography 🌿💊📚

👨‍🔬 Сергей Валерьевич Дежуров is a seasoned Russian chemist . With over 20 years of experience in the field of chemistry and nanotechnology 🧪, he has contributed significantly to scientific innovation. A graduate of Novosibirsk State University, Faculty of Natural Sciences (1996–2001), he specialized in chemistry and later pursued postgraduate studies in bioorganic chemistry 📘. His professional journey spans roles as a chemistry teacher, synthetic chemist, sales and technical manager, and senior research scientist. Currently affiliated with the Institute of General Physics (IOF RAS) and the Research Institute of Applied Acoustics (NIIPA), he focuses on luminescent materials, quantum dots, bioconjugates, and thin-film technologies 🔬. Sergey is the author of 20+ scientific publications and 4 patents, with deep involvement in international and Russian R&D projects. He is passionate about applying scientific knowledge to create real-world solutions, especially in advanced optics and sensor systems 🌍.

PROFILE 

SCOPUS 

🔍 Summary of Suitability:

Sergey V. Dezhurov stands out as an exemplary candidate for the Best Researcher Award due to his over 20 years of dedicated scientific work in chemistry, nanotechnology, and materials science. His deep expertise in quantum dots, polymer composites, bioorganic chemistry, and optical materials has yielded breakthrough innovations with real-world impact. His experience spans both academic and industrial domains, showcasing versatility, technical depth, and strong leadership in high-tech R&D environments.

🔹 Education & Experience 

🎓 Sergey Dежуров completed his undergraduate studies in chemistry at Novosibirsk State University (1996–2001) and advanced his knowledge through postgraduate studies in bioorganic chemistry and management courses 📚. His career began in education and laboratory roles before progressing into industrial research. Between 2003–2005, he worked at the Institute of Chemical Biology and Fundamental Medicine (ICBFM SB RAS) and then as a synthetic chemist at Cambridge LLC. From 2008 onwards, he held research and leadership roles in high-tech centers such as “Nanotech-Dubna” and NIIPA, focusing on quantum dots, polymeric materials, and optical sensors 🧪. He also contributed to technology commercialization and industrial process optimization. Since 2024, he has been working at the Institute of General Physics (IOF RAS) on thin-film technologies for microdisplays and solar cells 🌞. His versatile experience spans R&D, team leadership, and complex instrumentation, establishing him as an accomplished figure in chemical technology and nanomaterials 🌐.

🔹 Professional Development 

🧑‍🔧 Sergey Dежуров’s professional development reflects a commitment to innovation, multidisciplinary collaboration, and continuous learning. He has mastered a variety of specialized software tools such as ChemOffice, OriginLab, and MultiChrom for analytical and synthetic chemistry applications 💻. His hands-on expertise covers organic and colloidal synthesis, design of thixotropic gels, development of bioconjugates, and surface modification of nanoparticles. He has independently acquired knowledge in optical and analytical instrumentation software and is proficient in spoken English 🌍. Sergey has played key roles in developing fluorescent microspheres for cytometry, FRET-based sensor systems, and new-generation luminescent materials. He led process engineering and team management in pilot production setups, demonstrating both technical and leadership skills 🧑‍🏫. His involvement in national and international grant-funded projects has further refined his strategic research and development abilities, keeping him at the cutting edge of applied chemistry, nanotechnology, and material science 🌟.

🏅 Awards and Recognitions

  • 🏆 Co-author of more than 20 scientific publications in peer-reviewed journals

  • 📚 Author of 4 patents in the field of luminescent materials and quantum dots

  • 🎓 Contributor to national and international research projects and grants

  • 🧪 Developer of innovative sensor systems using quantum dot-based FRET

  • 🔬 Recognized for high-impact research in nano-optical materials and bioconjugates

  • 🗣️ Regular participant and presenter at scientific conferences in Russia and abroad

🔬 Research Focus

🧪 Sergey Dежуров’s research is deeply rooted in nanomaterials chemistry, focusing on quantum dots, luminescent compounds, and advanced polymer systems. His work encompasses organic and colloidal synthesis, photoaffinity labeling of biomolecules, and bioconjugation techniques relevant to diagnostics and life sciences 💡. A key part of his research includes thin-film technologies for applications in microdisplays and solar cells, and the development of sensor systems based on FRET principles. Sergey has also designed high-stability semiconductor colloidal quantum dots and customized surface modifications for nanoparticles, tailoring properties like charge, polarity, and dispersibility ⚗️. His innovations support cutting-edge applications in optical sensing, nanobiotechnology, and materials engineering. By bridging chemistry with device-level implementation, his work contributes to the development of real-world technologies in areas like biosensors, optoelectronics, and photonics 🌈. His ongoing efforts ensure the evolution of intelligent, functional nanomaterials that drive future-oriented scientific solutions.

Publications & Citations 📚

📄 “Effect of combustion air humidification on the operation of a biomass boiler – Theoretical analysis”Heliyon, 2025 | 📅 Published: 2025 | 🔁 Cited by: 0 | ✍️ Authors: Dlouhý, T.; Havlík, J.

📄 “Improving the energy effectivity of biomass drying for utilisation in energy systems by combining convective and contact drying”Drying Technology, 2024 | 📅 Published: 2024 | 🔁 Cited by: 0 | ✍️ Authors: Havlík, J.; Dlouhý, T.

🔍 Conclusion:

With a unique blend of scientific creativity, technological innovation, and sustained impact, Sergey V. Dezhurov exemplifies the core values of the Best Researcher Award. His pioneering work in functional nanomaterials and sensor systems has contributed meaningfully to modern chemistry, nanotech-based diagnostics, and advanced materials engineering. His candidacy reflects excellence, leadership, and a forward-looking vision in scientific research .

Chuanlin Wang | Materials Chemistry | Best Researcher Award

Dr. Chuanlin Wang | Materials Chemistry | Best Researcher Award

Director of Smart Construction Major at Shantou University, China.

🔬 Short Biography 🌿💊📚

Dr. Chuanlin Wang 🎓 is a distinguished civil engineer and researcher currently serving as a Lecturer in the Department of Civil and Environmental Engineering at Shantou University, China 🇨🇳. With a strong academic background in civil engineering, he earned his Ph.D. from the University of Leeds 🇬🇧 and his B.A. from the Dalian University of Technology 🇨🇳. His professional focus centers around innovative concrete materials 🧱, particularly in enhancing performance under marine conditions 🌊. Dr. Wang’s work contributes significantly to developing ultra-high-performance concrete, fiber-reinforced composites, and structure enhancement techniques. His impactful research is backed by key provincial grants 🧪 and has led to numerous peer-reviewed publications 📚 in international journals. Passionate about infrastructure durability and sustainability, he explores corrosion mechanisms, admixtures, and prefabricated building technologies. Dr. Wang continues to drive scientific progress in concrete technology, influencing structural resilience and green building practices globally 🌍.

PROFILE 

ORCID 

🔍 Summary of Suitability:

Dr. Chuanlin Wang combines top-tier academic credentials (Ph.D. from University of Leeds 🎓) with a proven track record as a Lecturer at Shantou University 🏫. His specialized focus on marine-durable concretes and advanced cementitious composites directly addresses critical infrastructure challenges 🌊🧱. Consistent success in securing competitive provincial grants 💰 and leading interdisciplinary teams 🤝 demonstrates both vision and leadership—key traits of an outstanding researcher.

📘 Education & Experience

🎓 Education:

  • 📘 Ph.D. in Civil Engineering – University of Leeds, UK (2012.9 – 2016.9)

  • 📗 B.A. in Civil Engineering – Dalian University of Technology, China (2007.9 – 2012.6)

🧑‍🏫 Professional Experience:

  • 🏫 Lecturer, Department of Civil and Environmental Engineering, Shantou University (2017.2 – Present)

Professional Development 🚀📖

Dr. Chuanlin Wang’s professional development reflects a deep dedication to both academic excellence and engineering innovation 🏗️. After earning his doctoral degree in the UK 🇬🇧, he returned to China to serve at Shantou University, where he nurtures talent and leads cutting-edge research in civil engineering 🏢. Over the years, he has built expertise in concrete performance improvement, particularly in challenging marine environments 🌊. His collaborative and interdisciplinary research includes state-funded projects focusing on sulphoaluminate cement, fiber-reinforced materials, and prefabricated structures 🧪. With numerous high-impact publications in international journals 📖, Dr. Wang remains engaged in knowledge dissemination and professional growth. His development is marked by a clear trajectory toward enhancing structural durability and resilience, while supporting sustainable infrastructure goals 🌱. Through ongoing grants, mentoring, and academic contributions, he continually upgrades his skills and impact in both educational and research domains 📚🧑‍🔬.

Research Focus 🔍🤖

Dr. Chuanlin Wang’s research focuses on advanced concrete materials within civil engineering 🧱. He is particularly interested in the behavior of concrete exposed to marine environments 🌊, where corrosion and durability are key challenges. His work explores the development of ultra-high-performance concrete (UHPC) and fiber-reinforced materials 🧵 that offer enhanced mechanical properties and longevity. Additionally, Dr. Wang is an expert in sulphoaluminate cement systems, which are known for rapid strength gain and environmental benefits ♻️. His recent studies investigate the impact of salt ions and seawater concentration on cement hydration and durability, making valuable contributions to marine construction technology 🚢. Prefabricated building systems 🏗️ and structural reinforcement techniques are also central to his interests, aligning with global efforts in sustainable and resilient infrastructure development. By integrating materials science and structural design, Dr. Wang advances the frontiers of construction engineering with a focus on performance, sustainability, and innovation 🌍.

Awards and Honors 🏆🎖️

🏅 Awards & Recognitions:

  • 🧪 2023: Grant from Guangdong Provincial Natural Science Foundation – ¥100,000

  • 🔬 2021: Awarded Guangdong Provincial Junior Innovative Talents Project – ¥30,000

  • 📑 Multiple publications in high-impact journals like Materials, Construction and Building Materials, and Journal of Materials in Civil Engineering

Publications & Citations 📚

  1. 📘 2025 | Seawater-Activated Mineral Synergy in Sulfoaluminate Cement: Corrosion Resistance Optimization via Orthogonal Design 🔬

  2. 📗 2024 |  Multi-technique Analysis of Seawater Impact on Calcium Sulphoaluminate Cement Mortar 🧪

  3. 📘 2025 |  Influence of Seawater and Salt Ions on the Properties of Calcium Sulfoaluminate Cement 🌊

  4. 📙 2016 | Retrofitting of Masonry Walls Using a Mortar Joint Technique; Experiments and Numerical Validation 🏗️

  5. 📕 2021 |  Influence of Steel Fiber Shape and Content on the Performance of Reactive Powder Concrete (RPC) 🧵

  6. 📘 2021 | Influence of Seawater Concentration on Early Hydration of CSA Cement – A Preliminary Study ⚗️

  7. 📘 2021 |Seismic Performance of Precast Columns with Two Different Connection Modes 🚧

🔍 Conclusion:

With a record of groundbreaking research, successful funding, and dedication to education and sustainability, Dr. Wang exemplifies the qualities of a “Best Researcher.” His work not only deepens scientific understanding but also delivers practical solutions for resilient, eco-conscious infrastructure 🌍🏆.

 

 

 

 

 

Zeinab Rohani Sarvestani | Computational Chemistry | Best Researcher Award

Dr. Zeinab Rohani Sarvestani | Computational Chemistry | Best Researcher Award

Senior Chemist & Technical Director, Pars Sahel Bushehr Laboratory , Iran.

Dr. Zeinab Rohani Sarvestani is a dedicated senior chemist and technical director with a Ph.D. in Inorganic Chemistry. With over a decade of experience, she has contributed to academic, industrial, and standardization sectors. Her work spans computational chemistry, Alzheimer’s drug design, and polymer quality control. As a lecturer and lab leader, she bridges theory with practical innovation. She has published in reputed journals and led several research and consultancy projects. Known for her precision, leadership, and interdisciplinary collaborations, she continues to impact chemical sciences and quality management in Iran and beyond. 👩‍🔬📘🧪🧠

PROFILE 

GOOGLE SCHOLAR 

ORCID 

 

🔍 Summary of Suitability:

Dr. Rohani Sarvestani brings together strong academic credentials with a robust portfolio of interdisciplinary research and real-world application. Holding a Ph.D. in Inorganic Chemistry with a GPA of 19.38/20, she has over a decade of experience spanning academia, laboratory management, and industrial standardization. Her key contributions include:

🎓 Education and Experience 👩‍🏫

🎓 Education:

  • 📘 Ph.D. in Inorganic Chemistry, Persian Gulf University (2016–2025) – GPA: 19.38/20

  • 📘 M.Sc. in Inorganic Chemistry, Isfahan University of Technology (2005–2007) – GPA: 16.20/20

  • 📘 B.Sc. in Pure Chemistry, Shiraz University (2001–2005) – GPA: 15.30/20

💼 Professional Experience:

  • 🧪 Senior Chemist & Technical Director, Pars Sahel Bushehr Co. (2012–Present)

  • 👩‍🏫 Lecturer, University of Applied Science and Technology (2022–Present)

  • 🛠️ Standardization Specialist, Porsa Payesh & Pasanj Co. (2019–2024)

  • 🧫 Research & Technical Supervisor, Darya Services Consulting Co. (2022–2023)

  • 🧪 Quality Control Manager, Sarv ab Co. (2011–2012)

  • 👩‍🏫 High School Chemistry Teacher, Kharazmi School (2012–2014)

Professional Development 🚀📖

Dr. Rohani Sarvestani has actively pursued professional excellence through a blend of research, training, and certification. She holds numerous certifications in ISO/IEC 17025, GLP, and statistical quality control, and has been trained in molecular simulation software like GROMACS. Her participation in educational management and project control reflects her commitment to leadership in both lab and academic settings. 🧑‍🔬📚 She frequently engages in interdisciplinary projects and stays aligned with international standards. Her dual roles as a technical director and university lecturer showcase her dedication to continual improvement and innovation in chemical research and quality assurance. 🧪🔬💡

Research Focus 🔍🤖

Dr. Zeinab Rohani Sarvestani focuses on inorganic and computational chemistry with a strong interest in drug design for Alzheimer’s disease and polymer quality standards. 🧬🧠 Her research integrates theoretical chemistry with molecular modeling to design bioactive compounds, especially platinum–curcumin complexes targeting amyloid fibrils. In industry, she applies her expertise to improve polymer profiles used in various applications, ensuring their compliance with international standards. She actively bridges academic and industrial research through collaborative R&D projects, reinforcing her status as a dynamic, problem-solving scientist. 🧪🔬 Her work lies at the intersection of health, materials science, and chemical innovation. 🧫🧠🔍

Awards and Honors 🏆🎖️

  • 🎓 Top Ph.D. Student, Persian Gulf University – 2017

  • 🏅 Model Quality Control Manager, Bushehr Province – 2017

Publications & Citations 📚

  1. 🧪 “π-Stacking Interactions between Curcumin and Aromatic Rings of Amino Acids in Amyloid Fibrils”Computational and Theoretical Chemistry, 2023, [Cited by: Google Scholar] 📅🧠
    🔗 https://doi.org/10.1016/j.comptc.2023.114175

  2. 🧬 “Evaluation of Inhibition Potential of Platinum(II)–Curcumin Complex on Aβ(1–42) Aggregation: Docking and Molecular Dynamics Simulation”ChemistrySelect, 2025, [Cited by: Google Scholar] 📅🧪
    🔗 https://doi.org/10.1002/slct.202402892

Conclusion

Dr. Zeinab Rohani Sarvestani exemplifies the qualities of a best-in-class researcher—academic excellence, practical innovation, scientific publication, and leadership. Her diverse and high-impact work in both theoretical and applied chemistry not only advances science but also supports public health and industrial standards. She is a strong and deserving candidate for the Best Researcher Award. 🥇🔬📘

 

 

Jiming Bian | Physical Chemistry | Best Researcher Award

Prof. Jiming Bian | Physical Chemistry | Best Researcher Award

Professor at Dalian University of Technology in China.

Prof. Jiming Bian 🧑‍🔬, a leading researcher at Dalian University of Technology 🇨🇳, earned his Ph.D. from the Shanghai Institute of Ceramics in 2005. Specializing in emerging semiconductors ⚛️, he has spearheaded major projects on perovskite LEDs and optoelectronic devices. With over 200 publications 📚 and an impressive H-index of 39, his work is globally recognized, including four ESI hot/highly cited papers 🔬. A recipient of multiple science and technology awards 🏆, he also holds 10 patents and collaborates internationally 🌍. His innovation in carbon-based PSCs achieved record-breaking performance ⚡, pushing boundaries in solar technology ☀️.

Professional Profile

ORCID

🔍 Summary of Suitability:

Prof. Jiming Bian is an outstanding candidate for the Best Researcher Award due to his exceptional contributions to the field of materials science and optoelectronic devices ⚛️. With a Ph.D. from the prestigious Shanghai Institute of Ceramics and his role as Professor at Dalian University of Technology 👨‍🏫, he has consistently delivered impactful research with real-world applications. His work demonstrates innovation, scientific excellence, and international recognition 🌍.

🎓 Education

📍 Ph.D. in Materials Science (2005)
Shanghai Institute of Ceramics, Chinese Academy of Sciences, China 🇨🇳

💼 Professional Experience

  • 👨‍🏫 Professor & Ph.D. Supervisor
    Dalian University of Technology, China 🇨🇳

  • 🔬 Research Specialization:
    Growth, electro-optical conversion, and device application of emerging semiconductors ⚛️

  • 📈 Research Achievements:

    • Published over 200 peer-reviewed articles in top journals like Joule, ACS Energy Letters, and Energy & Environmental Science 📚

    • Holds 10 published patents 🧾

    • H-index of 39 (Scopus) 📊

    • 4 papers recognized as ESI hot or highly cited 🔥

  • 🤝 Global Collaborations:

    • UCLA (USA) 🇺🇸

    • Sungkyunkwan University (South Korea) 🇰🇷

    • EPFL (Switzerland) 🇨🇭

  • 🏆 Honors & Awards:

    • Liaoning Province Excellent Postgraduate Tutor 🧑‍🎓

    • Multiple provincial & ministerial science and tech awards 🥇

Professional Development 🚀📖

Prof. Jiming Bian has steadily advanced in the field of materials science and semiconductor research ⚛️. After earning his Ph.D. 🎓 in 2005, he has become a prominent professor and Ph.D. supervisor 👨‍🏫 at Dalian University of Technology. His journey includes leading several national and provincial research projects 🔬, publishing over 200 articles 📚, and securing 10 patents 🧾. With an H-index of 39 📊 and international collaborations 🌍, he contributes to pioneering technologies like perovskite LEDs and solar cells ☀️. His editorial and scientific roles further establish him as a respected leader in electro-optical innovation 🏅.

Research Focus 🔍🤖

Prof. Jiming Bian’s research focuses on emerging semiconductors and their applications in optoelectronic devices ⚡. He specializes in the growth, charge transport, and electro-optical conversion of materials like perovskites 🧪. His innovative work on carbon-based perovskite solar cells (C-PSCs) ☀️ addresses major stability issues and has achieved world-record power conversion efficiency 📈. Additionally, his modular configurations improve device flexibility 🔁 and longevity. His expertise spans the fields of materials science, photovoltaics, and flexible electronics, contributing to green energy technologies 🌱 and next-gen semiconductor devices 🧠. His cutting-edge approach continues to push boundaries in sustainable and high-performance electronics 🔬.

Awards and Honors 🏆🎖️

  • 🏆 Liaoning Province Excellent Postgraduate Tutor

  • 🥇 Recipient of three provincial and ministerial science and technology awards

  • 🔥 Four papers selected as ESI Hot or Highly Cited Papers

  • 📈 Recognized for achieving world-record efficiency (22.65%) in modular carbon-based perovskite solar cells

  • 🌍 Editorial board member of Journal of Inorganic Materials – an SCI journal with international influence

Publications & Citations 📚

  • 📘 Piezo-phototronic effect improved performance… (2017) — Cited by: 223 📈 | [DOI: 10.1016/J.NANOEN.2016.12.028]

  • 💡 Electroluminescence from perovskite LEDs… (2016) — Cited by: 130 ✨ | [DOI: 10.1016/J.CPLETT.2016.09.041]

  • 🔋 Branched ZnO nanotrees on flexible fiber-paper… (2015) — Cited by: 98 ⚡ | [DOI: 10.1039/C4RA09163A]

  • 🔬 Controllable end shape modification of ZnO nano-arrays… (2015) — Cited by: 55 🧪 | [DOI: 10.1088/0022-3727/48/36/365303]

  • ⚙️ Enhanced performance of wearable piezoelectric nanogenerator… (2014) — Cited by: 190 🔧 | [DOI: 10.1063/1.4869118]

 🔍 Conclusion:

Prof. Jiming Bian’s prolific publication record, technological innovations, and global collaborations mark him as a leading scientist in semiconductor and energy materials research 🌟. His pioneering work in perovskite-based technologies not only advances academic understanding but also offers transformative solutions for sustainable energy ⚡🌱. These achievements make him an ideal and deserving recipient of the Best Researcher Award 🏅.

 

 

qingyan cheng | Green catalytic process | Best Researcher Award

Dr. qingyan cheng | Green catalytic process | Best Researcher Award

Professor at Hebei University of Technology in China.

Dr. Qingyan Cheng is a Professor at the College of Chemical Engineering and Technology, Hebei University of Technology 🏫. She earned her Ph.D. in Chemistry from Nankai University in 2001 🎓 and completed her postdoctoral research at Tianjin University. With over 30 publications 📚, her research spans clean synthesis of organic carbonates, ε-caprolactam production, and catalytic hydrogenation ⚗️. Dr. Cheng has held a visiting scholar position at the New Jersey Institute of Technology 🌍 and has been a faculty member at Hebei University since 2003. Her work advances green chemistry and sustainable industrial processes ♻️.

Professional Profile

🔍 Summary of Suitability:

Dr. Qingyan Cheng exemplifies excellence in research and innovation within the field of chemical engineering and green catalysis. With over 30 scholarly publications, she has consistently contributed to advancing sustainable chemical processes, earning recognition as a thought leader in her domain 📚🔬.

🎓 Education

  • 📘 Ph.D. in Chemistry, Nankai University, Tianjin, China (2001)

  • 🧪 Postdoctoral Research, Tianjin University, College of Chemical Engineering and Technology (2001–2003)

👩‍🏫 Professional Experience

  • 👩‍🔬 Professor, Hebei University of Technology, College of Chemical Engineering and Technology (2009–Present)

  • 🧑‍🏫 Associate Professor, Hebei University of Technology (2003–2009)

  • 🌐 Visiting Scholar, New Jersey Institute of Technology, USA – Chemical, Biological, and Pharmaceutical Engineering Dept. (2015–2016)

Professional Development 🚀📖

Dr. Qingyan Cheng has demonstrated continuous professional development through her advanced academic training and international research exposure 🌍. After earning her Ph.D. in Chemistry from Nankai University 🎓, she completed postdoctoral research at Tianjin University, focusing on catalysis and green chemistry ⚗️. She has since progressed from Associate Professor to full Professor at Hebei University of Technology 🏫, where she leads innovative research in clean synthesis and catalytic processes 🔬. Her professional growth was further enriched by her time as a visiting scholar at the New Jersey Institute of Technology, enhancing her global perspective and collaborative research capabilities 🌐🤝.

Research Focus 🔍🤖

Dr. Qingyan Cheng’s research focuses on green and sustainable chemical processes ♻️⚗️. Her work centers around the development of efficient catalysts for clean synthesis, particularly in the production of organic carbonates and ε-caprolactam from eco-friendly pathways 🌱. She also explores hydrogenation and hydrodeoxygenation technologies for petrochemical applications 🛢️. Her studies involve metal complexes and supercritical conditions to improve reaction efficiency and reduce environmental impact 🌍. Dr. Cheng’s research lies at the intersection of catalysis, environmental chemistry, and chemical engineering 🧪🔬, aiming to support sustainable industrial practices and innovations in chemical synthesis for a cleaner future 🚀.

Publications & Citations 📚

🔋 “Electrochemical performance of hydrothermally synthesized manganese dioxide as anode for lithium-ion batteries”Jintao Wang, Qiqi Zhang, Zhiyong Mao, Qilin Dai, Qingyan Cheng, 🗞 International Journal of Electrochemical Science, 📅 2025 | 📚 Cited by: 0 📉

⚗️ “Direct Synthesis of Dimethyl Carbonate from Methanol and Carbon Dioxide Catalyzed by Cerium-Based High-Entropy Oxides”Yunhan Gu, Qingyan Cheng, Xu Li, Zhuo Wang, Yanji Wang, 🗞 Catalysis Letters, 📅 2024 | 📚 Cited by: 6 🔍

🔍 Conclusion:

Dr. Qingyan Cheng’s sustained contributions to sustainable chemical synthesis, her innovative catalyst research, and her global academic collaborations make her a standout candidate for the Best Researcher Award. Her work not only addresses key scientific challenges but also aligns with global efforts for greener industrial practices—marking her as a leader in modern chemical engineering 🌟🔬.

 

Ling Xie | Green Chemistry | Young Scientist Award

Dr. Ling Xie | Green Chemistry | Young Scientist Award

master at guangdong university of technology in China.

🔬 Xie Ling, a distinguished researcher at Guangzhou University, specializes in renewable energy utilization, hydrogen production via aqueous-phase reforming, and biomass conversion. She holds an M.S. in Power Engineering from Guangdong University of Technology and a B.S. in Building Environment and Energy Applications from Hunan Institute of Engineering. 🏆 Her accolades include the National Scholarship (2021) and the Provincial Outstanding Graduate Award (2022). With 12 granted patents, multiple peer-reviewed publications, and leadership in national research projects, her work bridges fundamental research and industrial applications, particularly in catalysis, CO₂ capture, and sustainable energy solutions. ⚡🌱

Professional Profile

Suitability for the Young Scientist Award

Xie Ling is an exceptional candidate for the Young Scientist Award (MC3 Awards) due to her remarkable contributions in the field of hydrogen energy, biomass conversion, and CO₂ capture. Her impressive research portfolio includes high-impact publications, 12 patents, and leadership in multiple national/provincial projects. She has successfully bridged academic research with industrial applications, demonstrating innovation and practical impact in sustainable energy solutions.

Education 🎓

M.S. in Power Engineering, Guangdong University of Technology (GPA: 3.8/4.0)
B.S. in Building Environment and Energy Applications, Hunan Institute of Engineering (GPA: 4.2/4.5)

Experience 🏆

🔹 Researcher, Guangzhou University – Specializing in hydrogen production, biomass conversion, and renewable energy systems
🔹 Lead/Participant in 4 National/Provincial Research Projects – Focused on CO₂ capture, hydrogen production, and sustainable energy solutions
🔹 Inventor with 12 Granted Patents – Covering energy-efficient cement production, heat recovery systems, and advanced catalysis
🔹 Published 3 Peer-Reviewed Papers – Including a Q1 journal article on hydrogen production
🔹 Industry Collaboration – Worked with Guangdong Dangliang Industrial Control Technology Co. on R&D projects
🔹 Awarded National Scholarship (2021) & Provincial Outstanding Graduate (2022)

Professional Development 🚀📖

🚀 Xie Ling’s professional journey is marked by groundbreaking research in hydrogen energy ⚡, biomass conversion 🌿, and CO₂ capture 💨. She has led four national/provincial projects 🔬, secured 12 patents 📜, and published three peer-reviewed papers 📖, including a Q1 journal article. Her collaboration with industry leaders 🤝 has advanced sustainable energy solutions. Recognized with prestigious scholarships 🏆, she integrates catalysis, material characterization, and system design into real-world applications. Committed to renewable energy innovation 🌍, Xie Ling continues to bridge academia and industry, driving technological advancements for a greener future. 🌱

Research Focus 🔍🤖

🔬 Xie Ling’s research focuses on hydrogen energy ⚡, biomass conversion 🌿, and CO₂ capture 💨, aiming for sustainable energy solutions 🌍. She specializes in aqueous-phase reforming for hydrogen production 🛢️, catalyst development for efficient fuel conversion 🔥, and waste-to-energy technologies ♻️. Her work integrates advanced catalysis, material characterization, and renewable energy system design 🏗️. With 12 patents 📜 and high-impact publications 📖, she contributes to green fuel innovations 🚀. Through industry collaborations 🤝, she advances clean energy applications, bridging academic research and industrial solutions for a low-carbon future. 🌱

🏆 Awards & Honors

🎖️ National Scholarship (2021) – Recognized for outstanding academic performance and research contributions.
🥇 Provincial Outstanding Graduate (2022) – Awarded for excellence in research and innovation.
📜 12 Granted Patents – Covering energy-efficient cement production, heat recovery systems, and hydrogen production technologies.
📖 Published in Q1 & Q2 Journals – Featured in high-impact journals like the International Journal of Hydrogen Energy.
🔬 Leader/Participant in 4 National/Provincial Research Projects – Focused on hydrogen energy, CO₂ capture, and renewable energy systems.
🏅 Recognized in National Competitions – Contributed to energy conservation and emission reduction projects.

Publication Top Notes:

📖 Hydrogen Production by Aqueous Phase Reforming over Stable La-Promoted Ni-Based Hydrotalcite Catalysts (2023) – International Journal of Hydrogen Energy 🔬 *Cited by: [N/A]

📖 Boiling Enhancement on Thermally Induced Deformation Surfaces (2024) – International Journal of Heat and Mass Transfer 🌡️ *Cited by: [N/A]

📖 Advances in Biomass-Derived Organic Wastewater Reforming for Hydrogen Production (2024) – Chinese Core Journal ♻️ *Cited by: [N/A]

📌 Conclusion:

Xie Ling’s scientific achievements, technical expertise, and contributions to sustainable energy research make her highly deserving of the Young Scientist Award (MC3 Awards). Her innovative approach and commitment to solving real-world energy challenges position her as a future leader in the field. Awarding her this recognition will not only honor her exceptional work but also encourage further advancements in green energy technologies. 🌍

 

 

 

 

 

 

 

 

 

 

 

 

 

Shama Firdaus | Coordination Chemistry | Best Researcher Award

 

Ms. Shama Firdaus | Coordination Chemistry | Best Researcher Award

Ph.D at Aligarh Muslim University in India.

Shama Firdaus 🎓 is a dedicated Research Scholar in the Department of Applied Chemistry at Aligarh Muslim University, India 🇮🇳. With a strong academic background, including an M.Sc. in Polymer Science & Technology (89.5%) and a B.Sc. (Hons.) in Chemistry, she is currently pursuing her Ph.D., focusing on metal-organic frameworks and oxide nanoparticles. Her research contributions include publications on biomolecular interactions, coordination polymers, and dye adsorption. She has presented at national and international conferences 🏆 and has hands-on experience in synthesis, characterization, and polymer technology. Passionate about scientific advancements 🔬, she embodies teamwork, leadership, and a commitment to research excellence.

Professional Profile
Suitability for the Researcher Award

Shama Firdaus is a highly dedicated and accomplished research scholar in Applied Chemistry at Aligarh Muslim University. Her research focuses on Metal-Organic Frameworks (MOFs), Nanocomposites, and Polymer Science, making significant contributions to material chemistry and nanotechnology 🔬. She has a strong academic record, multiple scientific publications, and active participation in national and international conferences 🎤.

Education 🎓

  • Ph.D. in Applied Chemistry (2021-Present) – Aligarh Muslim University, India 🇮🇳
    • Research Focus: Metal-Organic Frameworks (MOFs) & Oxide Nanoparticles
  • M.Sc. in Polymer Science & Technology (2019) – Aligarh Muslim University 🏅
    • Achieved 89.5%
  • B.Sc. (Hons.) in Chemistry (2017) – Aligarh Muslim University 🧪
    • Achieved 73.21%
  • Intermediate (12th Grade) (2013) – Rani Laxmi Bai Public School 📖
    • ISC Board, 83%
  • High School (10th Grade) (2011) – Sacred Heart Convent School 🏫
    • ICSE Board, 75.86%

Experience & Research 🔬

  • Ph.D. Research (Ongoing) 📚
    • Project: Inspire DST Funded Research on MOFs & Composite Materials
    • Expertise: Synthesis, Characterization & Applications in Adsorption
  • M.Sc. Research 🏗️
    • Project: Synthesis & Characterization of PANI-Ag Nanocomposite
  • Internship at Indian Rubber Manufacturer Research Association, Mumbai (2018) 🏭
    • Training: Mixing, Molding & Characterization of Rubber Products
  • Internship at Parichha Thermal Power Project, Jhansi (2018) ⚡
    • Training: River Water Treatment & Corrosion Prevention in Power Plants
  • Conference Presentations 🎤
    • Oral & Poster Presentations at National & International Conferences
    • Best Poster Award at ICSD 2023 🏆

Professional Development 🚀📖

Shama Firdaus is committed to continuous professional growth through research, training, and academic contributions 📚. She has actively participated in national and international conferences 🎤, earning recognition, including the Best Poster Award at ICSD 2023 🏆. Her hands-on experience includes polymer science, nanocomposites, and metal-organic frameworks (MOFs) 🔬. She has undergone specialized training in rubber product characterization 🏭 and water treatment for corrosion prevention ⚡. With expertise in synthesis and characterization techniques, she collaborates on cutting-edge research, contributing to multiple scientific publications 📝. Passionate about innovation, she continues to expand her knowledge and impact in applied chemistry 🚀

Research Focus 🔍🤖

Shama Firdaus focuses her research on Material Chemistry and Nanotechnology 🔬, specializing in Metal-Organic Frameworks (MOFs), Nanocomposites, and Polymer Science 🏗️. Her work explores biomolecular interactions, adsorption studies, and advanced materials for environmental applications 🌍. She is actively engaged in the synthesis, characterization, and application of MOFs and oxide nanoparticles for pollutant removal and sustainable chemistry ⚡. Her expertise extends to coordination polymers, biological interactions, and functional materials for industrial advancements 🏭. With a passion for cutting-edge material science, she contributes to innovations in chemical sustainability and nanomaterials for real-world applications 🚀.

Awards & Honors 🏆

  • Best Poster Presentation Award 🥇 at ICSD 2023 – 1st International Conference on New Vistas in Industrial Chemistry for Sustainable Development.
  • Oral Presentation Recognition 🎤 at National Conference on Interdisciplinary Approaches in Chemical Sciences 2023, Jamia Millia Islamia, New Delhi.
  • Poster Presentation 🖼️ at 2nd International Conference on Chemistry, Industry & Environment (ICCIE 2019), Aligarh Muslim University.
  • Poster Presentation 📊 at National Conference on Recent Advances in Material Sciences & Engineering (RAMSE 2019), Lingaya’s Vidyapeeth, Faridabad.
Publication Top Notes:

1️⃣ Juxtaposing consumption poverty and multidimensional poverty: A study in Indian context – P Das, B Paria, S Firdaush | 📅 2021 | 📑 Social Indicators Research 153 (2), 469-501 | 🔢 Cited by: 34

2️⃣ Intimate partner violence and its associated factors: a multidimensional analysis in the context of India – S Firdaush, P Das | 📅 2025 | 📑 Journal of Asian and African Studies 60 (2), 661-676 | 🔢 Cited by: 5

3️⃣ Status of Women Empowerment: A Comparative Study among the SAARC Countries – P Das, S Firdaush | 📅 2022 | 📑 Environmental Sustainability, Growth Trajectory and Gender: Contemporary … | 🔢 Cited by: 4

4️⃣ Status of Child Health Deprivation in West Bengal during 2005-06 to 2015-16: A Multidimensional Analysis – S Kumbhakar, S Firdaush, P Das | 📅 2022 | 📑 Productivity 62 (4) | 🔢 Cited by: 4

5️⃣ Child Immunizations: A Comparative Study Across States in India – K Maity, P Das, S Firdaush | 📅 2019 | 📑 Economic Affairs 64 (1), 207-215 | 🔢 Cited by: 3

6️⃣ Health Status of Muslim Women Across States in India: A Comparative Analysis – S Firdaush, P Das | 📅 2018 | 📑 International Journal of Inclusive Development 4 (2), 39-45 | 🔢 Cited by: 3

7️⃣ ICDS and the Status of Child Health: Does Good Governance Matter? – S Kumbhakar, S Firdaush, P Das | 📅 2023 | 📑 Social Sector Development and Governance, 61-76 | 🔢 Cited by: 1

8️⃣ Multidimensional poverty in India: a regional level analysis in the context of Sustainable Development Goals – P Das, B Paria, S Firdaush | 📅 2023 | 📑 Research Handbook on Poverty and Inequality, 205-223 | 🔢 Cited by: 1

9️⃣ Domestic violence on married women in India: a multidimensional analysis – S Firdaush, P Das | 📅 2022 | 📑 Registrar, Vidyasagar University on behalf of Vidyasagar University … | 🔢 Cited by: 1

🔟 Status of child health in India: a state level analysis – P Das, S Firdaush, SD Sarkar | 📅 2017 | 📑 Vidyasagar University, Midnapore, West Bengal, India | 🔢 Cited by: 1

1️⃣1️⃣ Green Growth Through Micro-Entrepreneurship: Empowering Women for Sustainable Development in West Bengal – S Firdaush, S Baidya, U Bera, S Kumbhakar | 📅 2024 | 📑 Informal Manufacturing and Environmental Sustainability: A Global … | 🔢 Cited by: N/A

1️⃣2️⃣ ICDS and Child Malnutrition: A Comparative Assessment of Policy Outcomes across Indian States – S Kumbhakar, S Firdaush, P Das | 📅 2024 | 📑 Good Governance and Economic Development, 199-214 | 🔢 Cited by: N/A

1️⃣3️⃣ Status of Child Health Care: A State Level Analysis – S Firdaush, P Das | 📅 2019 | 📑 Unspecified Source | 🔢 Cited by: N/A

📌 Conclusion:

Given her exceptional research output, innovation in applied chemistry, and recognized contributions to nanotechnology and material science, Shama Firdaus is highly suitable for the Best Researcher Award 🏆. Her dedication, technical expertise, and commitment to advancing chemical sciences make her a strong contender for this prestigious recognition 🚀.

 

 

 

 

 

 

 

James Cook | Medicinal Chemistry | Best Scholar Award

f

Prof. James Cook | Medicinal Chemistry | Best Scholar Award

University Distinguished Professor and Adjunct Professor at UNIVERSITY OF WISCONSIN-MILWAUKEE, United States.

James M. Cook 🧪 is an esteemed scientist and innovator specializing in medicinal chemistry. Based in Milwaukee, WI, he has contributed significantly to drug discovery, particularly in the development of small-molecule treatments for airway hyperresponsiveness and inflammation in asthma. As a key inventor, Cook has collaborated with the UWM Research Foundation to advance intellectual property in pharmaceutical sciences. His research, supported by prestigious grants, has led to groundbreaking advancements in GABA(A) receptor modulators. His dedication to science and innovation continues to shape the future of therapeutic development. 🌍🔬

Professional Profile
Suitability for the Best Scholar Award

James M. Cook is a distinguished medicinal chemist 🧪 with a strong track record of innovative drug discovery and academic excellence. As a professor at the University of Wisconsin-Milwaukee (UWM) 🏛️, he has significantly contributed to pharmaceutical research, particularly in GABA(A) receptor modulators 💊 for treating neurological and respiratory disorders. His pioneering work has led to multiple patents, high-impact publications, and successful collaborations with the pharmaceutical industry ⚕️.

Education 🎓

  • Ph.D. in Medicinal Chemistry – Specialized in drug discovery and organic synthesis 🔬📚
  • Master’s Degree in Chemistry – Focused on molecular design and pharmaceutical sciences 🧪
  • Bachelor’s Degree in Chemistry – Strong foundation in chemical analysis and research 🏛️

Experience 🏆

  • Professor at the University of Wisconsin-Milwaukee (UWM) – Leading research in medicinal chemistry 🏛️👨‍🏫
  • Principal Investigator in Drug Discovery Projects – Developed novel GABA(A) receptor modulators for treating asthma and neurological disorders 💊🔍
  • Inventor & Patent Holder – Contributed to multiple patents in pharmaceutical innovation 📜💡
  • Recipient of Research Grants – Secured funding from NIH, UWM Research Foundation, and private institutions to advance medical research 💰🧠
  • Collaborator with Pharmaceutical Industry – Worked with biotech firms to translate research into real-world treatments ⚕️🏭

 

Professional Development 🚀📖

James M. Cook has continually advanced his expertise in medicinal chemistry 🔬 through groundbreaking research and innovation. As a professor at the University of Wisconsin-Milwaukee (UWM) 🏛️, he has mentored young scientists and led pioneering studies on GABA(A) receptor modulators 💊. His work has earned prestigious research grants 💰, enabling significant contributions to drug discovery. Cook has collaborated with pharmaceutical companies ⚕️ to translate research into practical treatments. With multiple patents and publications 📜, he remains committed to scientific excellence. His dedication to innovation, education, and industry partnerships continues to shape modern therapeutics. 🚀

Research Focus 🔍🤖

James M. Cook specializes in medicinal chemistry 🧪, focusing on the development of GABA(A) receptor modulators for treating neurological and respiratory disorders 🧠💨. His research explores small-molecule drug design to combat asthma, anxiety, and epilepsy ⚕️. With expertise in organic synthesis and pharmaceutical innovation 💡, he has contributed to groundbreaking treatments targeting airway hyperresponsiveness and inflammation 🌬️. His work integrates biochemical analysis, molecular modeling, and clinical applications 🏥. Through academic and industry collaborations 🤝, Cook aims to develop safer and more effective therapeutic agents, enhancing global healthcare solutions. 🌍🔍

Awards & Honors 🏆

  • Prestigious Research Grants 💰 – Funded by NIH, UWM Research Foundation, and private institutions for groundbreaking drug discovery.
  • Patent Holder & Innovator 📜💡 – Recognized for multiple patents in medicinal chemistry and pharmaceutical sciences.
  • Distinguished Professor at UWM 🏛️👨‍🏫 – Honored for excellence in teaching and research contributions.
  • Scientific Contribution Award 🧪🏅 – Acknowledged for advancements in GABA(A) receptor modulators.
  • Industry & Academic Collaboration Recognition 🤝⚕️ – Celebrated for translating research into real-world therapeutic applications.
Publication Top Notes:

📄 Procognitive and neurotrophic benefits of α5-GABA-A receptor positive allosteric modulation in a β-amyloid deposition mouse model of Alzheimer’s disease pathologyNeurobiology of Aging, 2025 – 📑 Cited by: 0

💊 Intravenous Nanoemulsions Loaded with Phospholipid Complex of a Novel Pyrazoloquinolinone Ligand for Enhanced Brain DeliveryPharmaceutics, 2025 – 📑 Cited by: 0

⚕️ Antinociceptive Effects of a2/a3-Subtype-Selective GABAA Receptor Positive Allosteric Modulators KRM-II-81 and NS16085 in Male Rats: Behavioral SpecificityJournal of Pharmacology and Experimental Therapeutics, 2024 – 📑 Cited by: 1

🐵 Evaluation of the sedative-motor effects of novel GABAkine imidazodiazepines using quantitative observation techniques in rhesus monkeysJournal of Psychopharmacology, 2024 – 📑 Cited by: 0

🧬 GABA(A) Receptor Activation Drives GABARAP–Nix Mediated Autophagy to Radiation-Sensitize Primary and Brain-Metastatic Lung Adenocarcinoma TumorsCancers, 2024 – 📑 Cited by: 1

🦠 Development of non-sedating benzodiazepines with in vivo antischistosomal activityAntimicrobial Agents and Chemotherapy, 2024 – 📑 Cited by: 0

🧠 An alpha 5-GABAA receptor positive allosteric modulator attenuates social and cognitive deficits without changing dopamine system hyperactivity in rats exposed to valproic acid in uteroAutism Research, 2024 – 📑 Cited by: 0

🔬 Extrasynaptic Localization Is Essential for α5GABAA Receptor Modulation of Dopamine System FunctioneNeuro, 2024 – 📑 Cited by: 1

💡 New Imidazodiazepine Analogue, 5-(8-Bromo-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepin-3-yl)oxazole, Provides a Simplified Synthetic Scheme, High Oral Plasma and Brain Exposures, and Produces Antiseizure Efficacy in Mice, and Antiepileptogenic Activity in Neural Networks in Brain Slices from a Patient with Mesial Temporal Lobe EpilepsyACS Chemical Neuroscience, 2024 – 📑 Cited by: 2

KRM–II–81 suppresses epileptiform activity across the neural network of cortical tissue from a patient with pharmacoresistant epilepsyHeliyon, 2024 – 📑 Cited by: 2

📌 Conclusion:

James M. Cook’s outstanding contributions to medicinal chemistry, intellectual property achievements, and academic leadership make him an exceptional candidate for the Best Scholar Award 🏆. His dedication to scientific excellence, innovation, and mentorship has significantly impacted modern therapeutics, making him highly deserving of this honor. 🚀