Emil Babić | Materials Chemistry | Best Researcher Award

Prof. Dr. Emil Babić | Materials Chemistry | Best Researcher Award

professor |  University of Zagreb | Croatia

Prof. Emil Babić is a distinguished Croatian physicist with a long and impactful career in condensed matter physics and materials science. Educated at the Faculty of Science, University of Zagreb, he went on to become a leading academic and researcher, contributing significantly to the study of high-entropy alloys, metallic glasses, and superconducting materials. His work has been published in high-impact journals, with over 50 years of scholarly contributions shaping the field. Prof. Babić has played a central role in mentoring generations of physicists, guiding around 50 theses, 13 doctoral dissertations, and 5 post-doctoral fellows. His expertise in electronic structures, alloy behavior, and advanced materials has been widely recognized through his publications and collaborations with international research groups. With a career that spans fundamental discoveries and applied innovations, Prof. Babić stands as a respected figure in Croatian and global physics, celebrated for his scientific rigor, mentorship, and dedication to advancing knowledge.

Professional Profile 

Prof. Emil Babić pursued his entire academic education at the Faculty of Science, University of Zagreb, Croatia, where he developed a deep foundation in physics. He earned his Master of Science degree in Physics , marking the beginning of his lifelong journey into advanced materials and solid-state research. His early academic training combined theoretical and experimental approaches, equipping him with the tools to explore the structural and electronic properties of complex alloys and materials. Building on his master’s research, he later obtained a PhD in Physics from the same institution, further cementing his expertise in condensed matter physics. His doctoral work laid the groundwork for his future research on metallic glasses, high-entropy alloys, and superconductivity. The rigorous academic environment of Zagreb’s Faculty of Science, combined with his own intellectual curiosity, enabled him to emerge as a scientist of international recognition, contributing broadly to physics and material sciences.

Experience 

Prof. Emil Babić has accumulated decades of rich academic and research experience, primarily within the Department of Physics, Faculty of Science, University of Zagreb. His career spans during which he served in both teaching and research positions. He has been a central figure in advancing Croatian physics research, contributing not only through publications but also by actively participating in collaborative international projects. Prof. Babić has mentored around 50 theses, 13 doctoral dissertations, and 5 post-doctoral researchers, leaving a strong academic legacy. His expertise has led him to engage in groundbreaking studies on superconductivity, metallic glasses, and high-entropy alloys, often collaborating with prominent international scientists. In addition to research, he has played an essential role in curriculum development, conference participation, and the organization of scientific activities, thus enriching the academic and research landscape in Croatia and beyond. His experience reflects both leadership and innovation.

Professional Development

Throughout his career, Prof. Emil Babić has actively pursued professional development, ensuring continuous growth as a researcher, mentor, and collaborator. He has remained engaged with the international scientific community by publishing influential research articles, contributing to conferences, and co-authoring studies with physicists from Europe and beyond. His professional journey also included securing academic scholarships and participating in exchange programs, which broadened his perspective on global scientific challenges. Importantly, Prof. Babić fostered a strong academic culture within the University of Zagreb, promoting interdisciplinary approaches to physics and materials science. He also took on organizational roles in scientific conferences, strengthening the visibility of Croatian research in the global arena. By mentoring young researchers and doctoral candidates, he continuously developed his leadership and supervisory skills, adapting to evolving methodologies in physics. His career reflects a balance of independent research, collaborative teamwork, and dedication to professional growth within academia.

Skills & Expertise

Prof. Emil Babić’s expertise spans a broad spectrum of condensed matter physics and materials science, with particular specialization in high-entropy alloys, metallic glasses, superconductivity, and electronic structures. His deep knowledge of advanced experimental techniques has enabled him to study phase transitions, bulk glass-forming ability, and the role of doping in improving material properties. His expertise extends to both theoretical analysis and laboratory-based experimentation, making him a versatile scientist. In addition, Prof. Babić has demonstrated strong mentorship and supervisory skills, having guided numerous graduate and doctoral students toward successful academic careers. He is adept at collaborative, cross-disciplinary research, working with international teams on complex projects. His ability to bridge fundamental physics with applied research highlights his innovative approach. Moreover, his publication record showcases his capacity to contribute impactful insights into material design, alloy characterization, and superconductivity, solidifying his reputation as a skilled and knowledgeable leader in his field.

Resarch Focus

Prof. Emil Babić’s research focus lies primarily in condensed matter physics, with an emphasis on metallic glasses, high-entropy alloys, and superconducting materials. His studies investigate the structural, electronic, and magnetic properties of these complex systems, aiming to understand their behavior under varying physical conditions. A recurring theme in his research is the transition from high-entropy to conventional alloys, where he has explored questions of stability, performance, and material optimization. Additionally, he has studied the enhancement of superconducting properties through nanostructuring and doping, contributing valuable insights to applied physics. His work is not only of theoretical importance but also holds technological significance, particularly in energy storage, advanced materials, and industrial applications. By publishing in leading journals and collaborating with international experts, Prof. Babić has advanced the global understanding of how alloys can be designed and manipulated to achieve desirable physical and functional properties.

Awards & Recognitions

Prof. Emil Babić’s long and impactful career has been recognized through academic honors, scholarships, and professional achievements. Over the past five decades, he has received recognition for both his scientific output and his contributions to academic mentorship. His research has been published in high-impact journals such as Journal of Applied Physics, Materials, Journal of Alloys and Compounds, and Europhysics Letters, which itself is a recognition of the international value of his work. He has also been invited to collaborate with international teams, highlighting his reputation as a trusted expert in physics. At the University of Zagreb, his role in mentoring over 50 theses and 13 doctoral dissertations has been celebrated as a vital contribution to the academic community. Furthermore, his involvement in organizing scientific conferences and contributing to research networks has earned him respect and acknowledgment, both within Croatia and internationally, as a leader in condensed matter physics.

Publication Top Notes 

Title: Mechanism of Enhancement in Electromagnetic Properties of MgB2 by Nano SiC Doping
Authors: SX Dou, O Shcherbakova, WK Yoeh, JH Kim, S Soltanian, XL Wang, E Babić
Year: 2007
Citations: 370

Title: High-transport critical current density above 30 K in pure Fe-clad MgB2 tape
Authors: S Soltanian, XL Wang, I Kušević, E Babić, AH Li, MJ Qin, J Horvat, HK Liu
Year: 2001
Citations: 232

Title: Superconductivity in zirconium-nickel glasses
Authors: E Babić, R Ristić, M Miljak, MG Scott, G Gregan
Year: 1981
Citations: 75

Title: Production of large samples of ultra-rapidly quenched alloys of aluminium by means of a rotating mill device
Authors: E Babić, E Girt, R Krsnik, B Leontic
Year: 1970
Citations: 64

Title: Correlation between doping induced disorder and superconducting properties in carbohydrate doped MgB2
Authors: JH Kim, SX Dou, S Oh, M Jerčinović, E Babić, T Nakane, H Kumakura
Year: 2008
Citations: 58

Title: Temperature dependent impurity resistivity in Al-based 3-d transition metal alloys
Authors: E Babić, R Krsnik, B Leontić, M Očko, Z Vučić, I Zorić, E Girt
Year: 1972
Citations: 50

Title: Hall effect and electronic structure of glassy Zr 3d alloys
Authors: J Ivkov, E Babić, RL Jacobs
Year: 1984
Citations: 49

Title: Sugar as an optimal carbon source for the enhanced performance of MgB2 superconductors at high magnetic fields
Authors: OV Shcherbakova, AV Pan, JL Wang, AV Shcherbakov, SX Dou, E Babić
Year: 2008
Citations: 47

Title: Stoner excitations in the strong itinerant amorphous ferromagnets FexNi80−xB18Si2 and Fe80B20
Authors: E Babić, Ž Marohnić, EP Wohlfarth
Year: 1983
Citations: 43

Title: The influence of pinning centres on magnetization and loss in Fe-Ni-B-Si amorphous alloys
Authors: J Horvat, Ž Marohnić, E Babić
Year: 1989
Citations: 42

Title: Magnetoresistance and V-I curves of Ag-sheathed (Bi,Pb tape)
Authors: E Babić, I Kušević, SX Dou, HK Liu, QY Hu
Year: 1994
Citations: 41

Title: Synthesis, structural characterization and magnetic properties of iron boride nanoparticles with or without silicon dioxide coating
Authors: M Mustapić, D Pajić, N Novosel, E Babić, K Zadro, M Cindrić, J Horvat
Year: 2010
Citations: 38

Title: Correlation between mechanical, thermal and electronic properties in Zr–Ni, Cu amorphous alloys
Authors: R Ristić, M Stubičar, E Babić
Year: 2007
Citations: 38

Title: Phase transformations during isochronal annealing of Fe40Ni40B20 glass
Authors: M Stubičar, E Babić, D Subašić, D Pavuna, Ž Marohnić
Year: 1977
Citations: 38

Prof. Emil Babić demonstrates exceptional research excellence in condensed matter physics and materials science, with impactful publications, mentorship achievements, and contributions to alloy and superconductivity research. His long-standing academic leadership and pioneering studies on metallic glasses and high-entropy alloys position him as a highly deserving candidate for the Best Researcher Award. Strengthening industry impact and international recognition could further solidify his profile, but his current record already reflects outstanding scientific excellence and influence.

Hui Li | Materials Chemistry | Chemical Scientist Award

Dr. Hui Li | Materials Chemistry | Chemical Scientist Award

Senior Engineer | Beijing Institute of Smart Energy | China

Dr. Hui Li is a Senior Engineer at the Beijing Institute of Smart Energy, specializing in electrochemical energy storage systems. With a strong foundation in lithium-ion and sodium-ion battery research, Dr. Li has established himself as an influential figure in advancing next-generation energy technologies. He has contributed extensively to both academic research and industrial applications, bridging the gap between fundamental science and real-world energy solutions. Over the years, he has participated in more than 11 major research projects, authored two books, published over 36 scientific papers, and filed 27 patents, of which eight have been authorized. His collaborations extend internationally, including research with the University of California, San Diego, and domestic partnerships with major enterprises to develop large-scale sodium-ion battery systems. Recognized for academic excellence and professional contributions, Dr. Hui Li is a driving force in the development of safe, reliable, and sustainable energy storage technologies.

Professional Profile 

Hui Li’s academic journey reflects a strong commitment to interdisciplinary research and excellence in engineering. He obtained his Bachelor’s degree in Environmental Science from Qingdao Agricultural University , where he laid the foundation for his scientific career. Pursuing higher studies, he joined the Beijing Institute of Technology (BIT) and earned a Ph.D. in Environmental Engineering. During his doctoral training, Hui Li was selected for an international joint research program at the University of California, San Diego , where he studied NanoEngineering with a focus on electrochemical energy materials under leading experts. His academic performance was distinguished with a National Ph.D. Scholarship (2016) and the Excellent Doctoral Dissertation Award from BIT . Through this education, he gained deep expertise in materials science, nanotechnology, and energy engineering, equipping him with the skills to contribute meaningfully to the rapidly evolving field of advanced energy storage technologies.

Experience 

Dr. Hui Li’s professional career spans cutting-edge research, project leadership, and industrial collaboration in the energy sector. He began with an internship at the State Grid Smart Grid Research Institute , working on energy storage projects. Later, as an R&D Engineer at the State Grid Smart Grid Research Institute , he led and contributed to seven major projects, including sodium-ion and liquid metal battery technologies funded by the National Key R&D Program and National Natural Science Foundation. He joined the Beijing Institute of Smart Energy, where he continues as a Senior Engineer, contributing to lithium-ion and sodium-ion battery development, particularly for extreme environments. His work spans research management, scenario analysis, and technology evaluation for grid-scale applications. To date, he has completed nine projects and is actively involved in two ongoing ones, establishing himself as a leading researcher integrating academic innovation with industry-based solutions.

Professional Development

Hui Li has consistently pursued professional development through academic, industrial, and collaborative engagements. He has authored two professional books on electrochemical energy storage and LiDAR applications, reflecting his ability to link theory with practice. He serves as a peer reviewer for multiple journals, including Shandong Electric Power Technology, Battery, and Mining and Metallurgy, ensuring he remains actively involved in evaluating and shaping research in his field. As a mentor at the Beijing Institute of Technology, he contributes to training the next generation of researchers. His editorial and reviewing roles have honed his analytical and critical skills, while his collaborations with top universities and companies, such as the University of California, San Diego and China Enli Co., Ltd., have expanded his expertise in global research networks. Membership in the China Chemical Society further complements his development, keeping him connected to evolving innovations and policy directions in chemical engineering and energy storage.

Skills & Expertise

Hui Li’s expertise spans electrochemical energy storage, battery materials engineering, and system integration. He has advanced knowledge of lithium-ion and sodium-ion battery electrode materials, particularly in aqueous sodium-ion systems and Prussian blue-based compounds. His skills extend across multi-scale design, nanomaterial synthesis, and material genome engineering, enabling him to translate fundamental science into scalable technologies. With 36 peer-reviewed publications and extensive patent contributions, he demonstrates a balance of theoretical insight and practical innovation. His technical competencies include electrochemical performance testing, TEER evaluation, and computational modeling for material optimization. Hui Li also excels in project leadership, having managed large-scale national and corporate-funded projects. His professional versatility allows him to work across academic, industrial, and collaborative research environments, contributing both as a lead investigator and as a team collaborator. His multidisciplinary expertise positions him as a key contributor to the advancement of high-performance, reliable, and sustainable energy storage technologies.

Resarch Focus

Dr. Hui Li’s research focuses on next-generation electrochemical energy storage systems, especially lithium-ion and sodium-ion batteries. His work emphasizes the design, synthesis, and performance optimization of cathode and anode materials, with a strong interest in environmentally friendly, high-safety, and high-capacity systems. He has investigated Prussian blue analogs, Na3V2(PO4)3-based materials, and layered oxides, contributing significantly to the advancement of aqueous sodium-ion batteries. A core aspect of his research is bridging fundamental material mechanisms with device-level applications, including Ah-level battery cells and full system integration for grid storage. Through collaborations with universities and enterprises, he has contributed to the development of a 102.96 kWh water-based sodium-ion battery energy storage system, demonstrating practical scalability. His current research explores material genome engineering, doping strategies, and advanced coatings to enhance battery stability, safety, and electrochemical performance. This integrated approach aims to accelerate the deployment of sustainable energy storage for renewable electricity and smart grid applications.

Awards & Recognitions

Hui Li’s outstanding academic and professional contributions have earned him several prestigious awards and recognitions. During his doctoral studies, he was honored with the National Ph.D. Scholarship , a distinction awarded to top-performing doctoral candidates across China. His doctoral thesis was further recognized with the Excellent Doctoral Dissertation Award  from the Beijing Institute of Technology, an accolade given to only 25 scholars university-wide. He also received the Beijing Institute of Technology Seedling Fund, awarded to only 20 individuals, highlighting his research potential in innovative energy storage materials. Beyond academic honors, Hui Li was recognized as an Outstanding Individual during the State Grid New Employee Induction Training, reflecting his dedication and leadership in professional settings. These achievements underscore his commitment to excellence in research, education, and practical innovation, marking him as a leading scientist contributing to the advancement of sustainable energy storage and smart grid technologies.

Publication Top Notes

Title: Effects of Mg doping on the remarkably enhanced electrochemical performance of Na₃V₂(PO₄)₃ cathode materials for sodium-ion batteries
Authors: H. Li, X.Q. Yu, Y. Bai, F. Wu, C. Wu, L.Y. Liu, X.Q. Yang
Year: 2015

Title: Understanding the electrochemical mechanisms induced by gradient Mg²⁺ distribution of Na-rich Na₃₊ₓV₂₋ₓMgₓ(PO₄)₃/C for sodium-ion batteries
Authors: H. Li, H.M. Tang, C.Z. Ma, Y. Bai, J. Alvarado, B. Radhakrishnan, S.P. Ong, F. Wu, Y.S. Meng, C. Wu
Year: 2018

Title: Na-Rich Na₃₊ₓV₂₋ₓNiₓ(PO₄)₃/C for Sodium Ion Batteries: Controlling the Doping Site and Improving the Electrochemical Performances
Authors: H. Li, Y. Bai, C. Wu, F. Wu, X.F. Li
Year: 2016

Title: Budding willow branches shaped Na₃V₂(PO₄)₃/C nanofibers synthesized via an electrospinning technique and used as cathode material for sodium-ion batteries
Authors: H. Li, Y. Bai, F. Wu, Y. Li, C. Wu
Year: 2015

Title:  Controllable synthesis of high-rate and long cycle-life Na₃V₂(PO₄)₃ for sodium-ion batteries
Authors: H. Li, C. Wu, Y. Bai, F. Wu, M.Z. Wang
Year: 2016

Hui Li is a highly suitable candidate for the Research for Chemical Scientist Award. His research demonstrates a rare balance of fundamental innovation and applied outcomes, particularly in advancing sodium-ion and lithium-ion battery technologies for sustainable energy storage. His track record of publications, patents, and leadership in major funded projects positions him as an impactful researcher at the intersection of chemistry, materials science, and energy engineering.

While greater emphasis on independent international leadership and broader engagement could strengthen his profile, his achievements already place him among the promising chemical scientists driving forward solutions for global energy challenges. He is well-deserving of recognition through this award.

Hong Seung Mo | Polymer chemistry | Best Researcher Award

Dr. Hong Seung Mo | Polymer chemistry | Best Researcher Award

SHINA T&C,  R&D center, South Korea

Dr. Seung-Mo Hong is a highly experienced and innovative R&D professional in the field of polymer engineering, with a dynamic career spanning over two decades. Based in Incheon, South Korea, he holds a Ph.D. in Polymer Engineering from Dankook University, where he explored multifunctional thiol hardeners and their thiol-epoxy curing behavior. He also earned his M.S. and B.S. in Chemical Engineering from Soongsil University. Throughout his distinguished career, Dr. Hong has led groundbreaking research and product development in UV-curable polymers, optical materials, and quantum dot technologies. He has worked with leading organizations like Shin-A T&C, SKC Co., Ltd., and Dongwoo Fine-Chem, spearheading innovations in display materials and adhesives. With over 108 patents and impactful publications, Dr. Hong continues to contribute to advanced material science. His expertise in synthesis, commercialization, and product innovation makes him a driving force in next-generation polymer technologies.

Professional Profile

Education 

Dr. Seung-Mo Hong earned his Ph.D. in Polymer Engineering from Dankook University (2021–2023), where he focused on multifunctional thiol hardeners and thiol-epoxy curing behaviors, graduating with a GPA of 4.37/4.50. Prior to this, he completed his M.S. in Chemical Engineering at Soongsil University (1999–2001) with a thesis on photosensitive polyimides and a GPA of 3.63/4.00. His foundational education was in Chemical Engineering, also at Soongsil University, where he completed his B.S. between 1995 and 1999. Throughout his academic journey, Dr. Hong developed a strong foundation in polymer chemistry, synthesis techniques, and structure-property relationships. His advanced studies focused on both industrial and functional polymers, aligning academic research with practical applications in optical materials and coatings. The rigor and depth of his academic training have equipped him to lead innovation across various industrial R&D platforms and contribute extensively to peer-reviewed scientific literature.

Experience 

Dr. Hong has amassed over 20 years of experience across top-tier R&D institutions and companies. Since 2018, he has led R&D at Shin-A T&C, spearheading innovations in polythiol synthesis, UV inks, and quantum dot optical films. At SKC (2015–2018), he developed multifunctional thiols and high-refractive-index resins for optical lenses. Earlier, he held a pivotal role at Dongwoo Fine-Chem (2006–2015), leading the development of hard coatings, flexible films for OLED, and photosensitive oligomers. His international experience includes a research assignment at Sumitomo Chemical in Japan, where he focused on anti-static and anti-fouling coatings. Beginning his career at SSCP (AkzoNobel) and LG Electronics, Dr. Hong specialized in urethane acrylates and BLU prism sheets. His career reflects deep expertise in polymer synthesis, process scale-up, and product commercialization across diverse applications such as displays, adhesives, and coatings, making him a versatile and strategic leader in the field of advanced materials.

Professional Development

Dr. Seung-Mo Hong has consistently pursued professional development through diverse leadership and technical roles across Korea and Japan. His strengths lie in R&D management, commercialization of high-tech polymer systems, and intellectual property strategy. He is proficient in reverse engineering, defect analysis, VOC resolution, and patent mapping. He has mentored numerous junior researchers and managed large-scale research projects. Notably, his work at Shin-A T&C and SKC led to market-ready innovations in quantum dot resins and multifunctional thiols. Dr. Hong is also fluent in Korean, business-level Japanese, and conversational English, enhancing his collaborative capabilities in multinational settings. He is skilled in using Minitab for statistical analysis and is Six Sigma Green Belt certified. His contributions to the polymer industry are reinforced by 108+ patents and multiple international publications, reflecting his commitment to ongoing innovation and excellence in advanced materials science.

Skills & Expertise

Dr. Seung-Mo Hong possesses a comprehensive skill set centered on advanced polymer science and industrial application. His core competencies include the synthesis and design of UV-curable oligomers and monomers, sulfur-containing compounds, thermoset polymers, and photosensitive materials. He is highly proficient in process development, including commercialization strategies, scale-up procedures, and optimization of production techniques for optical resins and films. Dr. Hong’s material application expertise spans a wide range of products, such as optical films for displays, high-refractive-index lenses, hard coatings, adhesives, and quantum dot-based materials. His analytical capabilities enable him to reverse engineer competitor products, resolve customer complaints, and conduct root cause analysis. Additionally, he is skilled in patent mapping, clearance, and intellectual property risk mitigation. As a seasoned R&D leader, he has mentored junior researchers and led multidisciplinary teams. He is fluent in Korean, professionally proficient in Japanese, and conversational in English, and he is adept at using Minitab and Microsoft Office tools.

Resarch Focus

Dr. Seung-Mo Hong’s research focuses on polymer synthesis, especially UV-curable oligomers and monomers, sulfur-based functional materials, and optical polymers for high-performance applications. His work delves into the development of thiol-based curing systems, high-refractive-index resins, and photosensitive materials for displays and electronics. He has pioneered methods for synthesizing polythiols, epoxy acrylates, and quantum dot UV inks, which have significantly impacted the optical film and display industries. His industrial research encompasses materials for hard coatings, adhesives, lens materials, and flexible electronics, bridging academic precision with commercial applicability. Hong’s approach includes novel chemical formulations, reaction optimization, and product durability improvements. He aligns his research with market trends in displays, wearables, and energy-efficient materials. Through an interdisciplinary lens, Dr. Hong advances polymer technology that underpins next-generation electronic and photonic devices.

Awards & Recognitions

Dr. Seung-Mo Hong’s exceptional contributions to polymer chemistry and industrial innovation have been widely recognized. He received the prestigious Invention King Award from SKC in both 2017 and 2018, honoring his groundbreaking developments in multifunctional thiols and optical materials. While at Dongwoo Fine-Chem, he was honored with the Most Patent Applications Award in 2011, highlighting his prolific output in material innovations, followed by the Excellent Employee Award in 2009. These accolades reflect his ability to transform scientific ideas into commercial products and his dedication to research excellence. In addition to these recognitions, Dr. Hong holds over 100 registered domestic patents and several international patents, demonstrating his continuous impact on the global materials science community. His Six Sigma Green Belt certification further attests to his proficiency in process optimization and quality control, solidifying his reputation as a visionary and highly effective research leader in advanced polymer materials.

Publication Top Notes 

Title: Optimization of synthetic parameters of high purity trifunctional mercaptoesters and their curing behavior for the thiol–epoxy click reaction
Authors: Seung-Mo Hong, Oh Hwan Kim, Seung Hwan Hwang
Year: 2021
Citations: 8+

Title: Synthesis and Characterization of Multifunctional Secondary Thiol Hardeners Using 3‑Mercaptobutanoic Acid and Their Thiol−Epoxy Curing Behavior
Authors: Seung-Mo Hong, Seung Hwan Hwang
Year: 2022
Citations: 10+

Title: Enhancing the shelf life of epoxy monoacrylate resins using acryl phosphate as a reactive additive
Authors: Seung-Mo Hong, Oh Hwan Kim, Seung Hwan Hwang
Year: 2022
Citations: 6+

Title: Synthesis and characteristics of novel 2-hydroxy-3-mercaptopropyl terminated polyoxypropylene glyceryl ether as an epoxy hardener of epoxy-based adhesives
Authors: Seung-Mo Hong, Seung Hwan Hwang
Year: 2022
Citations: 4+

Title: Chemistry of Polythiols and Their Industrial Applications
Authors: Seung-Mo Hong, Oh Hwan Kim, Seung Hwan Hwang
Year: 2024
Citations: 1+

Title: Synthesis of 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene di(mercaptopropionate) for high-luminance and refractive prism sheets
Authors: Seung-Mo Hong, Oh Hwan Kim, Seung Hwan Hwang
Year: 2024
Citations: 0 (new)

Title: Synthesis and Characterization of UV-Curable Resin with High Refractive Index for a Luminance-Enhancing Prism Film
Authors: J.H. Song, Seung-Mo Hong, S.K. Park, H.K. Kwon, S.H. Hwang, J.M. Oh, S.M. Koo, G.W. Lee, C.H. Park
Year: 2025
Citations: 0 (new)

Title: Synthesis and characterization of hyperbranched thiol hardener and their curing behavior in thiol–epoxy
Authors: J.H. Song, Seung-Mo Hong, S.K. Park, H.K. Kwon, S.H. Hwang, J.M. Oh, S.M. Koo, G.W. Lee, C.H. Park
Year: 2025
Citations: 0 (new)

Conclusion:

Dr. Hong’s career demonstrates a consistent trajectory of innovation, problem-solving, and technology development in polymer and materials engineering. His cutting-edge research, industrial application success, and outstanding patent portfolio make him a compelling and deserving recipient of the Best Researcher Award. His work not only advances scientific understanding but also significantly contributes to the commercialization of high-performance materials, impacting industries such as display technology, electronics, and optical coatings.

Fa-Feng Xu | Materials Chemistry | Chemical Scientist Award

Dr. Fa-Feng Xu | Materials Chemistry | Chemical Scientist Award

assistant researcher, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences in  China.

🔬 Short Biography 🌿💊📚

Dr. Fa-Feng Xu 🧪 is an accomplished researcher specializing in photonic materials and microlasers. He currently serves as an Assistant Research Fellow at the Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences 🇨🇳. He earned his Ph.D. in Physical Chemistry from the Institute of Chemistry, Chinese Academy of Sciences in 2020 🎓, following his bachelor’s degree in Material Chemistry from Jilin University in 2014. His postdoctoral work at the same institute focused on material engineering under the supervision of renowned scholars. Dr. Xu’s interdisciplinary research integrates chemistry, materials science, and photophysics to develop advanced optical devices such as microlaser arrays for applications in displays and encryption. With multiple high-impact publications and patents, Dr. Xu is a rising talent in the field of optoelectronic materials 🌟.

PROFILE 

Orcid 

🔍 Summary of Suitability:

Based on the provided CV, Dr. Fa-Feng Xu is a highly suitable candidate for the Chemical Scientist Award. His academic training and professional journey demonstrate a profound command over physical chemistry, material science, and photochemistry—disciplines central to the chemical sciences. Dr. Xu holds a Ph.D. in Physical Chemistry from the Chinese Academy of Sciences and has engaged in impactful postdoctoral research in materials engineering. He has consistently worked on the synthesis and functionalization of advanced photonic materials, particularly organometallic complexes and organic microlasers, which are at the cutting edge of chemical innovation.

🔹 Education & Experience 

Dr. Xu’s academic journey began at Jilin University, where he earned his Bachelor’s degree in Material Chemistry in 2014 🎓. He then pursued a Ph.D. in Physical Chemistry at the Institute of Chemistry, Chinese Academy of Sciences, mentored by distinguished professors including Academician Jiannian Yao 🧬. His research focused on photochemistry and organic photonic materials. After earning his doctorate in 2020, Dr. Xu continued as a Postdoctoral Fellow in Material Engineering at the same institute, collaborating with Prof. Yu-Wu Zhong. Since November 2023, he has been serving as an Assistant Research Fellow at the Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, contributing to the sustainable utilization of salt lake resources 🧫. His career reflects deep expertise across disciplines including chemistry, optics, and nanomaterials, shaping innovations in photonic applications 💡.

🔹Professional Development

Dr. Fa-Feng Xu has developed a robust professional skill set grounded in multidisciplinary science 🧪. His expertise spans organic synthesis, materials design, and photonic device fabrication. With a strong foundation in chemistry and materials science, he designs and synthesizes organometallic and liquid crystal systems with high-performance photonic properties 🌈. He is skilled in fabricating organic microlasers and constructing patterned microlaser arrays for advanced applications like laser displays and information encryption 🔐. Dr. Xu is adept in characterizing materials using techniques such as UV-Vis, SEM, TEM, XRD, and AFM. His practical experience extends to the use of cutting-edge instrumentation including electron beam lithography and femtosecond lasers for device testing. Through collaborations and continuous research, he brings innovation to organic photonics, contributing significantly to applied optical science and advanced materials development 🎯.

🛠️ Skills & Expertise

Dr. Fa-Feng Xu possesses a diverse set of interdisciplinary research skills that bridge the fields of chemistry, photophysics, and materials science 🧪🔬. He is proficient in the synthesis, purification, and analysis of organic and organometallic compounds, including platinum and iridium complexes and liquid crystal systems 🌈. His expertise extends to designing and fabricating organic microlaser arrays—such as microdisks, microspheres, and microplates—for applications in laser displays and information encryption 🖥️🔐. Dr. Xu is skilled in preparing polymer-based microstructures using materials like PS and PMMA for high-performance waveguiding and lasing functions ⚡. He is also experienced in constructing and characterizing inorganic nanostructures, such as silver nanowires 🧫. Technically adept, he operates advanced instruments including SEM, TEM, AFM, XRD, and UV-Vis for structural and optical characterization 🛠️. Furthermore, his familiarity with cutting-edge device fabrication techniques—such as vacuum deposition, lithography, and femtosecond lasers—enables innovative work at the frontier of organic photonics and materials science 🚀.

🔬 Research Focus

Dr. Xu’s research is centered on the intersection of organic photonics, microlasers, and advanced optical materials 🌟. He focuses on the rational design and synthesis of organometallic compounds (notably Pt and Ir complexes), liquid crystal systems, and polymeric microstructures for photonic applications. His work includes fabricating two-dimensional microcrystals and wavelength-tunable microlaser arrays, which find use in full-color laser displays and encrypted information systems 🖥️🔒. Dr. Xu also explores waveguiding phenomena and the development of photonic materials with thermal and optical responsiveness, bridging chemistry, optics, and device engineering. His contributions reflect a broader interest in next-generation optoelectronics, nonlinear optics, and nanostructured materials. The integration of organic systems into functional devices highlights his forward-thinking approach in applied physical chemistry and materials innovation 🔬✨.

🏆 Awards & Recognitions

  • 🥇 Excellent Paper Certificate, 8th CAST Excellent Scientific Paper Selection Program

  • 🎓 Merit Student, University of Chinese Academy of Sciences (UCAS), 2014–2015

  • 🏆 Outstanding Student Leader, UCAS, 2015–2016

  • 💰 Academic Scholarships, UCAS (2014–2019)

  • 🎖️ National Encouragement Scholarships, Jilin University (2010–2012)

  • 🌟 Excellence Scholarship Student, Jilin University, 2010–2011

Publications & Citations 📚

  1. 📝 Organoplatinum(II) Cruciform: A Versatile Building Block to Fabricate 2D Microcrystals with Full-Color and White Phosphorescence and Anisotropic Photon Transport, Angew. Chem. Int. Ed. 📅 2022 | 🔁 Cited by: [citation data needed] 🌈📸

  2. 📝 Wavelength-Tunable Single-Mode Microlasers Based on Photoresponsive Pitch Modulation of Liquid Crystals for Information Encryption, Research 📅 2020 | 🔁 Cited by: [citation data needed] 🔒📡

  3. 📝 Flat-Panel Laser Displays Based on Liquid Crystal Microlaser Arrays, CCS Chem. 📅 2020 | 🔁 Cited by: [citation data needed] 🖥️🎯

  4. 📝 Thermo-Responsive Light-Emitting Metal Complexes and Related Materials, Inorg. Chem. Front. 📅 2020 | 🔁 Cited by: [citation data needed] 🔥🔬

  5. 📝 Molecular Cocrystals with Hydrogen-Bonded Polymeric Structures and Polarized Luminescence, Materials 📅 2022 | 🔁 Cited by: [citation data needed] 💎💡

  6. 📝 Research Progress of Cesium-Based Photonic Materials, J. of Salt Lake Research 📅 2024 | 🔁 Cited by: [citation data needed] 🧂🔍

🔍 Conclusion:

Dr. Xu’s contributions lie at the intersection of synthetic chemistry, optics, and functional materials. His creative solutions to complex challenges in organic photonics and his strong publication and patent record mark him as an emerging leader in chemical research. His profile exemplifies the innovation and interdisciplinary excellence the Chemical Scientist Award aims to recognize.

Yoon Dae Hyeob | Nanotechnology | Chemical Research Excellence Award

Mr. Yoon Dae Hyeob | Nanotechnology | Chemical Research Excellence Award

Undergraduate Researcher, Chungbuk National University (CBNU) in  South Korea.

🔬 Short Biography 🌿💊📚

Dae Hyeob Yoon 🎓 is an enthusiastic undergraduate researcher in Mechanical Engineering at Chungbuk National University (CBNU) 🏛️. With a passion for micro/nanotechnology 🔬, sensors 📡, and MEMS, he has already co-authored a scientific publication in Applied Sciences titled “Development of a Flexible and Conductive Heating Membrane…” 📄. His early engagement in research has led to meaningful contributions to wearable electronics, showcasing innovative applications in smart textiles 👕. He received recognition at the UROP Achievement Presentation 🏅 and has actively shared his work through poster presentations at KSME 🇰🇷 and the upcoming EKC in Austria 🇦🇹. Dae Hyeob’s commitment to cutting-edge research and hands-on experience highlights his growing potential in engineering and nanotech-based innovation 🚀.

PROFILE 

Orcid 

🔍 Summary of Suitability:

Dae Hyeob Yoon has demonstrated exceptional promise in chemical and materials research at an early academic stage. As an undergraduate researcher, he has already contributed to high-impact work involving electroless plating and nanofiber membrane engineering—fields critical to chemical and materials innovation. His ability to co-author a peer-reviewed journal article in Applied Sciences and present at national and international forums underscores his commitment and capability in advancing chemical research.

🔹 Education & Experience 

Dae Hyeob Yoon 🎓 is currently pursuing his Bachelor of Science degree in Mechanical Engineering at Chungbuk National University (CBNU) 🏫. As an undergraduate researcher, he actively explores fields like micro/nanotechnology ⚛️, sensors 🔍, and MEMS (Microelectromechanical Systems) ⚙️. His most notable experience includes co-authoring a research article published in the journal Applied Sciences 🧪. Dae Hyeob has also participated in industry-relevant research projects, including one consultancy project, demonstrating early exposure to applied engineering solutions 🏗️. He presented his findings at major academic platforms like the KSME conference 🗣️ and is scheduled to present internationally at EKC 2025 🇦🇹. His award at the UROP presentation reflects his strong engagement in academic research and innovation at the undergraduate level 🥇.

🔹Professional Development

Dae Hyeob Yoon 💡 has shown commendable growth through professional development in research, academic collaboration, and applied innovation. His publication in Applied Sciences marks a significant milestone early in his academic career 📘. Engaging in one consultancy/industry-based project 📊 has helped him bridge theoretical knowledge with real-world applications. He has actively presented posters at both national and international conferences such as KSME 🏛️ and the upcoming EKC in Austria 🌍. These platforms not only validate his technical contributions but also enhance his communication and scientific outreach skills 🗣️. Through these experiences, Dae Hyeob has gained confidence in publishing, presenting, and networking with peers and professionals. Though still at the undergraduate level, he displays a trajectory that aligns with global standards of academic excellence and practical impact 🚀.

🛠️ Skills & Expertise

Dae Hyeob Yoon 🧠 possesses a strong set of technical and research-based skills that align with his focus on mechanical engineering and nanotechnology. He is proficient in experimental design 🔬, data analysis 📊, and material characterization techniques essential for micro/nano research. His hands-on experience with electroless plating, nanofiber fabrication, and flexible electronics 💡 showcases his laboratory competency. Dae Hyeob demonstrates excellent scientific writing ✍️, having contributed to a peer-reviewed publication. He is skilled in poster preparation and oral presentations 🗣️, evident from his active participation in conferences such as KSME and EKC. His collaboration in interdisciplinary projects reflects strong teamwork and problem-solving abilities 🤝. Additionally, he shows initiative in learning new tools and adapting to research environments quickly ⚙️. His growing experience with sensors, MEMS, and smart materials further strengthens his technical portfolio, making him a promising researcher for future innovations in wearable and adaptive technologies 🚀.

🔬 Research Focus

Dae Hyeob Yoon’s 🔬 research focus lies at the intersection of micro/nanotechnology, sensors, and MEMS (Microelectromechanical Systems) 🔍. His key interest revolves around the development of scalable, low-voltage, and flexible heating membranes for use in wearable electronics and smart textiles 👕. His co-authored work in Applied Sciences demonstrates innovation using BSA-assisted electroless plating techniques on nanofiber membranes, contributing to advances in flexible and conductive materials ⚗️. The research tackles challenges in mechanical stability, voltage efficiency, and applicability for next-generation electronic textiles ⚡. These studies aim to revolutionize how wearable devices function in health, fitness, and smart environments 🌐. By engaging with real-world engineering applications at the micro/nano scale, Dae Hyeob is addressing limitations in existing sensor technologies while opening up new possibilities for adaptive, lightweight, and cost-effective devices 🧠.

🏆 Awards & Recognitions

  • 🏅 Received award at the Undergraduate Research Opportunities Program (UROP) Achievement Presentation, CBNU

  • 📜 Co-author of a published research paper in Applied Sciences (SCI-indexed journal)

  • 🧪 Selected to present a research poster at the Korean Society of Mechanical Engineers (KSME) Conference

  • 🌍 Scheduled to present at the European Korean Conference (EKC) in Austria, August 2025

Publications & Citations 📚

📄 “Development of a Flexible and Conductive Heating Membrane via BSA-Assisted Electroless Plating on Electrospun PVDF-HFP Nanofibers” — Published in Applied Sciences (MDPI) in 2024, cited by [check current citations on MDPI/Google Scholar] 🔍 https://www.mdpi.com/2076-3417/15/14/8023 📚

🔍 Conclusion:

Dae Hyeob Yoon’s early-stage yet impactful work in chemical-based materials engineering, particularly in nanoscale electroless plating and polymer membrane development, makes him a highly suitable candidate for the Chemical Research Excellence Award. His research not only contributes to fundamental chemical processing but also has real-world applications in next-gen wearable technologies. His trajectory signals future breakthroughs in chemical innovation.

Chuanlin Wang | Materials Chemistry | Best Researcher Award

Dr. Chuanlin Wang | Materials Chemistry | Best Researcher Award

Director of Smart Construction Major at Shantou University, China.

🔬 Short Biography 🌿💊📚

Dr. Chuanlin Wang 🎓 is a distinguished civil engineer and researcher currently serving as a Lecturer in the Department of Civil and Environmental Engineering at Shantou University, China 🇨🇳. With a strong academic background in civil engineering, he earned his Ph.D. from the University of Leeds 🇬🇧 and his B.A. from the Dalian University of Technology 🇨🇳. His professional focus centers around innovative concrete materials 🧱, particularly in enhancing performance under marine conditions 🌊. Dr. Wang’s work contributes significantly to developing ultra-high-performance concrete, fiber-reinforced composites, and structure enhancement techniques. His impactful research is backed by key provincial grants 🧪 and has led to numerous peer-reviewed publications 📚 in international journals. Passionate about infrastructure durability and sustainability, he explores corrosion mechanisms, admixtures, and prefabricated building technologies. Dr. Wang continues to drive scientific progress in concrete technology, influencing structural resilience and green building practices globally 🌍.

PROFILE 

ORCID 

🔍 Summary of Suitability:

Dr. Chuanlin Wang combines top-tier academic credentials (Ph.D. from University of Leeds 🎓) with a proven track record as a Lecturer at Shantou University 🏫. His specialized focus on marine-durable concretes and advanced cementitious composites directly addresses critical infrastructure challenges 🌊🧱. Consistent success in securing competitive provincial grants 💰 and leading interdisciplinary teams 🤝 demonstrates both vision and leadership—key traits of an outstanding researcher.

📘 Education & Experience

🎓 Education:

  • 📘 Ph.D. in Civil Engineering – University of Leeds, UK (2012.9 – 2016.9)

  • 📗 B.A. in Civil Engineering – Dalian University of Technology, China (2007.9 – 2012.6)

🧑‍🏫 Professional Experience:

  • 🏫 Lecturer, Department of Civil and Environmental Engineering, Shantou University (2017.2 – Present)

Professional Development 🚀📖

Dr. Chuanlin Wang’s professional development reflects a deep dedication to both academic excellence and engineering innovation 🏗️. After earning his doctoral degree in the UK 🇬🇧, he returned to China to serve at Shantou University, where he nurtures talent and leads cutting-edge research in civil engineering 🏢. Over the years, he has built expertise in concrete performance improvement, particularly in challenging marine environments 🌊. His collaborative and interdisciplinary research includes state-funded projects focusing on sulphoaluminate cement, fiber-reinforced materials, and prefabricated structures 🧪. With numerous high-impact publications in international journals 📖, Dr. Wang remains engaged in knowledge dissemination and professional growth. His development is marked by a clear trajectory toward enhancing structural durability and resilience, while supporting sustainable infrastructure goals 🌱. Through ongoing grants, mentoring, and academic contributions, he continually upgrades his skills and impact in both educational and research domains 📚🧑‍🔬.

Research Focus 🔍🤖

Dr. Chuanlin Wang’s research focuses on advanced concrete materials within civil engineering 🧱. He is particularly interested in the behavior of concrete exposed to marine environments 🌊, where corrosion and durability are key challenges. His work explores the development of ultra-high-performance concrete (UHPC) and fiber-reinforced materials 🧵 that offer enhanced mechanical properties and longevity. Additionally, Dr. Wang is an expert in sulphoaluminate cement systems, which are known for rapid strength gain and environmental benefits ♻️. His recent studies investigate the impact of salt ions and seawater concentration on cement hydration and durability, making valuable contributions to marine construction technology 🚢. Prefabricated building systems 🏗️ and structural reinforcement techniques are also central to his interests, aligning with global efforts in sustainable and resilient infrastructure development. By integrating materials science and structural design, Dr. Wang advances the frontiers of construction engineering with a focus on performance, sustainability, and innovation 🌍.

Awards and Honors 🏆🎖️

🏅 Awards & Recognitions:

  • 🧪 2023: Grant from Guangdong Provincial Natural Science Foundation – ¥100,000

  • 🔬 2021: Awarded Guangdong Provincial Junior Innovative Talents Project – ¥30,000

  • 📑 Multiple publications in high-impact journals like Materials, Construction and Building Materials, and Journal of Materials in Civil Engineering

Publications & Citations 📚

  1. 📘 2025 | Seawater-Activated Mineral Synergy in Sulfoaluminate Cement: Corrosion Resistance Optimization via Orthogonal Design 🔬

  2. 📗 2024 |  Multi-technique Analysis of Seawater Impact on Calcium Sulphoaluminate Cement Mortar 🧪

  3. 📘 2025 |  Influence of Seawater and Salt Ions on the Properties of Calcium Sulfoaluminate Cement 🌊

  4. 📙 2016 | Retrofitting of Masonry Walls Using a Mortar Joint Technique; Experiments and Numerical Validation 🏗️

  5. 📕 2021 |  Influence of Steel Fiber Shape and Content on the Performance of Reactive Powder Concrete (RPC) 🧵

  6. 📘 2021 | Influence of Seawater Concentration on Early Hydration of CSA Cement – A Preliminary Study ⚗️

  7. 📘 2021 |Seismic Performance of Precast Columns with Two Different Connection Modes 🚧

🔍 Conclusion:

With a record of groundbreaking research, successful funding, and dedication to education and sustainability, Dr. Wang exemplifies the qualities of a “Best Researcher.” His work not only deepens scientific understanding but also delivers practical solutions for resilient, eco-conscious infrastructure 🌍🏆.

 

 

 

 

 

Tatiana Itina | nanotechnology | Best Researcher Award

Prof. Dr. Tatiana Itina | nanotechnology | Best Researcher Award

Research Director at CNRS, Lab. Hubert Curien UMR 5516/UJM, France.

Dr. Tatiana E. Itina is a renowned physicist and research director at CNRS, based at the Hubert Curien Laboratory in France. 🌍 She is globally recognized for her pioneering work in laser–matter interactions, nanomaterial modeling, and femtosecond laser synthesis. 🔬 With over 130 publications and leadership in international projects, she founded the LASERMODE and PREDICT teams, contributing significantly to sustainable nanotechnology, photonics, and medical applications. 💡 Her theoretical frameworks and simulations have shaped modern approaches in nanoparticle formation and surface chemistry. As a frequent keynote speaker and mentor, she actively shapes the next generation of materials scientists. 👩‍🔬✨

PROFILE 

GOOGLE SCHOLAR

SCOPUS 

ORCID 

🔍 Summary of Suitability:

Dr. Tatiana E. Itina exemplifies excellence in scientific innovation, global impact, and leadership in laser–matter interactions and nanomaterial science. With over 130 high-impact publications and pioneering theoretical frameworks, she has significantly advanced femtosecond laser processing, nanoparticle synthesis, and surface chemistry. As a CNRS Research Director and founder of renowned teams (LASERMODE & PREDICT), her influence extends across academia, industry, and international research collaborations. She leads cutting-edge projects like PEPR SUNRISE and contributes to global science governance, mentoring, and education. Her broad citation footprint and frequent invited keynotes underscore her global recognition and scholarly authority. 🌍📚

Education & Experience  📘

  • 📘 HDR (Habilitation): Université de la Méditerranée, France – 2008

  • 🎓 PhD in Physics: Aix-Marseille University & MIPT (cotutelle) – 1999

  • 🧑‍🎓 MSc in Physics/Engineering: MIPT, Moscow Institute of Physics and Technology – 1994 (with honors)

  • 👩‍🔬 Director of Research, CNRS – 2010–present

  • 🧪 Team Leader, LASERMODE & PREDICT research groups

  • 🧭 Scientific Secretary, CNRS Section 10 (2021–2025)

Professional Development 🚀📖

Dr. Itina has continuously advanced her career through dynamic leadership and global collaboration. 🤝 She leads strategic initiatives like PEPR SUNRISE and ANR LAMORSIM, focusing on ultrafast laser synthesis and nanomaterials modeling. ⚡ Her roles span EU consortia, bilateral research alliances, and editorial boards, demonstrating her impact in shaping scientific discourse. 📚 She mentors PhD students and postdocs across Europe and Africa and actively participates in curriculum development and international schools. 🌐 Recognized as a top invited speaker and panel expert, she also contributes to evaluation committees like ANR, NSF, and ERC, influencing science policy and innovation worldwide. 🏆🧬

Research Focus 🔍🤖

Dr. Itina’s research primarily focuses on laser-induced nanomaterial synthesis and modeling. 💥 Her work delves into femtosecond and picosecond laser interactions with matter, exploring ultrafast processes like melting, ablation, and alloying. 🧫 She specializes in designing multifunctional nanohybrids, controlling surface wettability, and understanding nanoparticle transformations. 🌡️ With atomistic simulations and machine learning, she pioneers predictive approaches to optimize laser processing and material performance. 🤖 Her findings advance applications in biomedicine, photonics, catalysis, and energy. 🌍 From theoretical frameworks to real-world innovations, Dr. Itina’s interdisciplinary research bridges physics, chemistry, and engineering in transformative ways. 🔧🧪

Awards and Honors 🏆🎖️

  • 🥇 IAAM Fellow Medal – International Association of Advanced Materials (2024)

  • 🏆 Outstanding Referee Award – Springer-Nature Journals

  • 🎤 Top Invited Speaker – SPIE Photonics West, HPLA, ICPEPA, SMS, LPHYS

  • 👩‍💼 Scientific Board Member – SPIE, ALT, CECAM, E-MRS, Photonics West LASE

  • 🔬 Founder – LASERMODE & PREDICT Research Teams (CNRS-recognized)

Publications & Citations 📚

  1. 📄 Investigation of nanoparticle generation during femtosecond laser ablation of metals (2007) – Cited by 1,000+ 📈
    🔗 Applied Surface Science

  2. 📄 Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin (2017) – Cited by 200+ 📈
    🔗 Scientific Reports

  3. 📄 On nanoparticle formation by laser ablation in liquids (2010) – Cited by 500+ 📈
    🔗 The Journal of Physical Chemistry C

  4. 📄 Understanding mono- and bi-metallic Au and Ni nanoparticle responses to fast heating (2024) – Cited by 50+ 📈
    🔗 Nanoscale Advances

  5. 📄 Mechanisms of laser-based synthesis and modifications of nanomaterials (2023) – Cited by 100+ 📈
    🔗 SPIE Proceedings

🔍 Conclusion:

Dr. Itina’s groundbreaking contributions, sustained research excellence, and scientific leadership make her an outstanding candidate for the Best Researcher Award. Her innovative modeling work and global impact align perfectly with the values this award aims to celebrate. She not only advances science but also empowers the next generation of researchers. 🏅🔝

 

 

Kacsó Alex – Barna | Biomaterial | Best Researcher Award

Mr. Kacsó Alex – Barna | Biomaterial | Best Researcher Award

Research Scholar at UMFST “G.E. Palade” from Targu Mures , Romania.

Kacsó Alex-Barna is a Romanian mechanical engineer and PhD student at UMFST “G. E. Palade” in Târgu Mureș. With a strong academic foundation in engineering, design, and digital skills, he has honed his expertise in CAD/CAM and manufacturing technology. His professional journey includes roles in automotive product development and design engineering, showcasing his adaptability and precision. Passionate about innovation and continuous growth, Alex has actively contributed to major industrial projects while earning certifications in web design and digital marketing. His multicultural experience through Erasmus+ further enhances his versatile and global outlook. 🚀📐🌍

PROFILE 

ORCID 

 

🔍 Summary of Suitability:

Kacsó Alex-Barna is a dynamic young researcher actively contributing to the optimization of manufacturing systems in the automotive sector. As a PhD candidate with a solid foundation in machine construction and CAD/CAM, his early-career achievements already reflect a commitment to impactful and applied research. He has published peer-reviewed work, undertaken complex design projects, and integrated modern tools like Catia V5 to improve engineering processes. His experience in both academic and industrial settings ensures that his research is not only theoretical but directly translatable to real-world challenges.

🎓 Education & Experience 

🎓Education:

  • 🎓 PhD Student in Engineering – UMFST “G.E. Palade”, Târgu Mureș (2024–present)

  • 🎓 Master’s in CAD/CAM – UMFST “G.E. Palade” (2022–2024)

  • 📘 Bachelor’s in Machine Construction Technology – UMFST “G.E. Palade” (2018–2022)

  • 🌐 Erasmus+ at University of Patras, Greece (2019–2020)

  • 🧑‍🏫 Post-University Teaching Training (Level I & II)

  • 📜 Web Design Certificate (FreeCodeCamp, 2022)

  • 📈 Digital Marketing Certificate (Google, 2021)

Experience:

  • 🏭 Mechanical Engineer – TMF S.R.L. (2022–2024, 2024–present)

  • 🚗 Product Developer – Hirschmann Automotive (2024)

  • 🗂️ Secretary – Euroformed Consulting (2021–2022)

  • 🔧 Intern – TMF S.R.L. (2020)

  • 🌊 Beach Admin/Trade Worker – Aluniș S.R.L. (2017–2020)

  • 🍽️ Waiter Assistant – SCB Sovata SA (2016)

Professional Development 🚀📖

Alex has demonstrated exceptional commitment to his professional development through a range of training programs and certifications. He completed the Bosch Academy Program, gaining insight into Industry 4.0, lean management, and logistics. His continuous learning approach is reflected in digital certifications like web design and marketing, equipping him with versatile skills beyond engineering. Alex’s real-world experience in high-pressure roles sharpened his time management and communication abilities. His early leadership as a beach administrator and his participation in the Junior Business Academy show entrepreneurial spirit and administrative competency. He thrives on learning, self-improvement, and applying innovation in all tasks. 🚀📚🔧

Research Focus 🔍🤖

Kacsó Alex-Barna focuses his research on optimization and design of manufacturing lines, particularly for the automotive sector. His academic and professional work revolves around machine construction, CAD/CAM technologies, and production efficiency. In his publication, he explores innovative design approaches to streamline manufacturing processes and enhance product quality. His engineering expertise integrates simulation tools like Catia V5 to ensure precision in design and execution. Passionate about smart industry principles, his research aligns with Industry 4.0 trends, targeting sustainable and intelligent manufacturing solutions. This multidisciplinary approach merges technical design with practical implementation. 🔩🚘📊

Awards and Honors 🏆🎖️

  • 🏆 Publication in Acta Marisiensis. Seria Technologica – “Optimization and design of a manufacturing line for automotive products” (2024)

  • 🎓 Erasmus+ Scholar – University of Patras, Greece (2019–2020)

  • 📜 Bosch Academy Certificate – Industry 4.0 & Lean Management (2022)

  • 📈 Junior Business Academy Graduate – Business administration fundamentals (2022)

  • 🌐 FreeCodeCamp Certificate – Responsive Web Design (2022)

  • 📊 Google Digital Workshop – Digital Marketing Fundamentals Certificate (2021)

Publications & Citations 📚

📄 “Optimization and design of a manufacturing line for automotive products”Acta Marisiensis. Seria Technologica, 2024.
🔍 Cited by: [Not publicly indexed/cited yet] 📚🛠️

🔍 Conclusion:

Kacsó Alex-Barna stands out as a promising candidate for the Best Researcher Award due to his innovative contributions, industry-integrated research focus, and rapid progression in the field of mechanical and manufacturing engineering. His ability to merge academic excellence with hands-on industry experience makes his work both relevant and impactful. He exemplifies the qualities of a researcher dedicated to solving real-world problems through technical expertise and continuous learning. 🏅📈🔬

 

 

Venkatesan Srinivasan| Nanomaterials | Young Scientist Award

Dr. Venkatesan Srinivasan| Nanomaterials | Young Scientist Award

Assistant Professor at Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technologyin India.

Dr. V. Srinivasan 🎓 is an Assistant Professor of Chemistry at Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India. His research focuses on the synthesis, characterization, and optimization of nanoprobes and small organic probes for applications in sensors, biological systems, and solar cells 🌞🧪. He has published 27 articles in reputed international journals, with a total impact factor of 106.9 📖✨. His work also includes the fabrication of dye-sensitized solar cells and the development of bioactive organic molecules. With 562 citations 📊 and an H-index of 13, Dr. Srinivasan is making significant contributions to photochemistry and nanomaterials research.

Professional Profile

🔍 Summary of Suitability:

Dr. V. Srinivasan is an ideal candidate for the Young Scientist Award due to his exceptional contributions to a, photochemistry, and energy research 🔬🌞. As an Assistant Professor, he has demonstrated remarkable scientific innovation, impactful research, and a strong commitment to advancing sustainable chemistry. His work focuses on fluorescent nanoprobes, bioactive molecules, and dye-sensitized solar cells, addressing critical challenges in biosensing, environmental monitoring, and renewable energy.

🎓 Education:

  • Ph.D. in Chemistry 🧪 – Specialized in nanomaterials and photochemistry.

  • Master’s in Chemistry (M.Sc.) 📚 – Advanced studies in chemical sciences.

  • Bachelor’s in Chemistry (B.Sc.) 🏫 – Foundation in fundamental chemistry concepts.

💼 Experience:

  • Assistant Professor 👨‍🏫 – Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai.

  • Researcher in Nanomaterials 🔬 – Expertise in synthesizing and characterizing nanoprobes for diverse applications.

  • Scientific Author ✍️ – Published 27 papers in international journals with an impact factor of 106.9.

  • Photochemistry Specialist 🌞 – Worked on dye-sensitized solar cells and organic sensitizers for improved efficiency.

  • Reviewer & Collaborator 🤝 – Engaged in 5 research collaborations and contributed to journal revisions.

 

Professional Development 🚀📖

Dr. V. Srinivasan 🎓 has continuously enhanced his expertise through extensive research and collaborations 🤝. As an Assistant Professor 👨‍🏫, he has contributed to the advancement of nanoprobes, bioactive molecules, and photochemistry 🌞. His professional growth includes publishing 27 high-impact journal articles 📖, achieving an H-index of 13 📊, and securing 562 research citations. He actively engages in interdisciplinary collaborations, refining innovative methodologies in nanotechnology 🔬. A dedicated member of IAENG (504612) 🏅, he stays updated with emerging trends. His work in fluorescent nanomhttps://chemicalscientists.com/venkatesan-srinivasan-nanomaterials-young-scientist-award-2180/aterials and solar energy conversion reflects his commitment to scientific innovation and sustainability 🌱.

Research Focus 🔍🤖

Dr. V. Srinivasan’s research revolves around nanomaterials and photochemistry 🔬🌞, focusing on the synthesis and characterization of fluorescent nanoprobes for applications in biosensors, solar cells, and environmental monitoring 🧪🌍. His work includes developing aggregation-induced emissive (AIE) nanodots for bioimaging 🧬, graphene oxide dots (GO dots) for explosive detection 💥, and carbon nanocubes (CNCs) for antibiotic sensing 💊. Additionally, he explores dye-sensitized solar cells (DSSC) with novel organic sensitizers to enhance efficiency ⚡. His recent focus is on synthesizing bioactive organic molecules and nanomaterials for biomedical applications, making significant contributions to sustainable and innovative chemistry 🌱🧑‍🔬.

🏆 Awards & Honors:

  • Young Scientist Award Nominee 🏅 – Recognized for contributions in nanomaterials and photochemistry.

  • Published in High-Impact Journals 📖 – 27 research papers with a total impact factor of 106.9.

  • Research Citations Achievement 📊 – 562 citations, H-index: 13, and i10-index: 14.

  • Active Research Collaborator 🤝 – Engaged in 5 interdisciplinary collaborations.

  • Professional Membership 🎓 – Member of IAENG (504612) for engineering and research excellence.

  • Expert Reviewer 📝 – Contributed to 23 journal revisions in reputed international publications.

Publication Top Notes:

📗 Green synthesis of zinc oxide nanoparticles using Brassica oleracea var. botrytis leaf extract: Photocatalytic, antimicrobial and larvicidal activity – 111 citations, 2023 (Chemosphere 323, 138263)

💡 Unravelling the effect of anchoring groups on the ground and excited state properties of pyrene using computational and spectroscopic methods – 58 citations, 2016 (PCCP 18(19), 13332-13345)

🔬 A simple and ubiquitous device for picric acid detection in latent fingerprints using carbon dots – 48 citations, 2020 (Analyst 145(13), 4532-4539)

🦠 Pyrene based Schiff bases: Synthesis, crystal structure, antibacterial and BSA binding studies – 46 citations, 2021 (JMS 1225, 129153)

♻️ Fuel waste to fluorescent carbon dots and its multifarious applications – 42 citations, 2019 (Sensors and Actuators B: Chemical 282, 972-983)

💠 Pyrene based D–π–A architectures: synthesis, density functional theory, photophysics and electron transfer dynamics – 38 citations, 2017 (PCCP 19(4), 3125-3135)

🌐 Nanostructured graphene oxide dots: synthesis, characterization, photoinduced electron transfer studies, and detection of explosives/biomolecules – 29 citations, 2018 (ACS Omega 3(8), 9096-9104)

🧬 Pyrene-based prospective biomaterial: In vitro bioimaging, protein binding studies and detection of bilirubin and Fe³⁺ – 28 citations, 2019 (SAA: Molecular and Biomolecular Spectroscopy 221, 117150)

AIE nanodots obtained from a pyrene Schiff base and their applications – 28 citations, 2017 (ChemistrySelect 2(4), 1353-1359)

⚛️ A combined experimental and computational characterization of D–π–A dyes containing heterocyclic electron donors – 24 citations, 2017 (JPPB A: Chemistry 332, 453-464)

🔋 A diminutive modification in arylamine electron donors: Synthesis, photophysics and solvatochromic analysis–towards the understanding of dye-sensitized solar cell performances – 20 citations, 2015 (PCCP 17(43), 28647-28657)

🩺 Evaluation of the anti-rheumatic properties of thymol using carbon dots as nanocarriers on FCA induced arthritic rats – 15 citations, 2021 (Food & Function 12(11), 5038-5050)

🧪 Facile synthesis of carbon nanocubes and its applications for sensing antibiotics – 14 citations, 2020 (JPPB A: Chemistry 403, 112855)

🔦 Light induced behavior of xanthene dyes with benzyl viologen – 11 citations, 2014 (Synthetic Metals 196, 131-138)

🧬 Miniscule modification of coumarin-based potential biomaterials: Synthesis, characterization, computational and biological studies – 7 citations, 2023 (JPPB A: Chemistry 445, 115044)

🧑‍💻 Computational, reactivity, Fukui function, molecular docking, and spectroscopic studies of a novel (E)-1-Benzyl-3-(2-(Pyrindin-2-yl) Hydrazono) Indolin-2-One – 6 citations, 2024 (Polycyclic Aromatic Compounds 44(9), 6263-6283)

🧲 Synthesis, crystal structure and protein binding studies of a binuclear copper (I) complex with triphenylphosphine-based dithiocarbazate – 6 citations, 2023 (Inorganic Chemistry Communications 157, 111195)

⚗️ A fluorescent chemosensor for selective detection of chromium (III) ions in environmentally and biologically relevant samples – 4 citations, 2024 (SAA: Molecular and Biomolecular Spectroscopy 316, 124286)

🧪 A comprehensive investigation of ethyl 2-(3-methoxybenzyl) acrylate substituted pyrazolone analogue: Synthesis, computational and biological studies – 4 citations, 2024 (Chemical Physics Impact 8, 100531)

🌱 Biomass-derived potential nano-biomaterials: Protein binding, anti-biofilm activity and bio-imaging – 3 citations, 2024 (JMS 1300, 137155)

🎯 Conclusion:

Dr. V. Srinivasan’s research excellence, scientific impact, and innovative contributions make him highly deserving of the Young Scientist Award. His pioneering work in nanomaterials, biosensors, and renewable energy showcases his potential as a leading young researcher shaping the future of scientific advancements. 🚀🔬

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shariful Islam | Nanomaterials | Young Scientist Award

 

Mr. Shariful Islam | Nanomaterials | Young Scientist Award

Scientific Officer at Institute of Food Science and Technology  in Bangladesh.

Shariful Islam 🧑‍🔬 is a dedicated Scientific Officer at the Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 🇧🇩. With a Master’s degree in Inorganic and Analytical Chemistry from the University of Dhaka 🎓, he specializes in analytical chemistry, food bioactive substances, and nanoencapsulation. His research focuses on enhancing the bioavailability of bioactive compounds and developing functional foods 🍎. An accomplished scientist, he has published in high-impact journals 📖 and received multiple scholarships and awards 🏆. Passionate about innovation, he strives to advance food science for a healthier future 🌱.

Professional Profile
Suitability for the Young Scientist Award

Shariful Islam is highly suitable for the Young Scientist Award due to his exceptional contributions to food science, analytical chemistry, and nanoencapsulation. With a strong academic background from the University of Dhaka 🎓, he has demonstrated excellence in scientific research, innovation, and problem-solving. His work focuses on enhancing the bioavailability of bioactive compounds, functional food development, and advanced analytical techniques, making a significant impact on food technology and public health.

Education 🎓

Master of Science in Inorganic and Analytical Chemistry, University of Dhaka, Bangladesh (2018)
Bachelor of Science in Chemistry, University of Dhaka, Bangladesh (2016)
Higher Secondary Certificate (HSC), Taragonj H N Uchcha Madhyamic Bidyalaya, Gazipur (2010)
Secondary School Certificate (SSC), Taragonj H. N. High School, Gazipur (2008)

Professional Experience 🏢

🔹 Scientific Officer – Institute of Food Science and Technology (IFST), BCSIR, Dhaka (Nov 2021 – Present)
🔸 Conducts research on food bioactive compounds, nanoencapsulation, and analytical chemistry.
🔸 Plans and manages research projects, ensuring compliance with scientific standards.

🔹 Lecturer of Chemistry – Primeasia University, Dhaka (Feb 2020 – Nov 2021)
🔸 Delivered lectures, developed curricula, and assessed student performance.

🔹 Quality Control Officer – Beximco Pharmaceuticals Ltd., Dhaka (Aug 2019 – Jan 2020)
🔸 Ensured product quality through analytical testing and regulatory compliance.

🔹 Executive, Analytical Research & Development – ACI HealthCare Ltd., Dhaka (Sep 2018 – July 2019)
🔸 Developed and validated HPLC methods for pharmaceutical analysis.

Professional Development 🚀📖

Shariful Islam is committed to continuous learning and skill enhancement in analytical chemistry and food science 🧪. He has participated in international training workshops, including the Japan-Asia Youth Exchange Program in Science (SAKURA) 🇯🇵. He has completed specialized training on Gas Chromatography (GC-FID/MS) 🔬, Atomic Absorption Spectrophotometry (AAS) ⚗️, and Dumas Protein Analysis 🍞. He actively presents research at scientific conferences 🎤 and has received multiple scholarships 🏆. His expertise extends to laboratory techniques, statistical analysis 📊, and food bioactive compound research, making him a valuable contributor to scientific innovation and development 🌍

Research Focus 🔍🤖

Shariful Islam’s research primarily revolves around food science 🥦, analytical chemistry 🧪, and nanoencapsulation ⚛️. He explores the bioavailability of bioactive compounds to enhance functional food formulations 🍎. His work includes micro and nanoencapsulation techniques to improve nutrient stability and delivery 🏺. Additionally, he investigates dietary fiber enrichment 🌾, antioxidant properties 🛡️, and fermentation-based food innovations 🍞. His expertise extends to metal complex synthesis ⚗️ and their applications in biological and pharmaceutical sciences 💊. Through interdisciplinary approaches, he aims to develop healthier and more sustainable food products 🌍, bridging chemistry and nutrition for global well-being

Awards & Honors 🏆

🎖 National Science and Technology (NST) Fellowship – Awarded for outstanding research in MS thesis.
🏅 Post-Graduation Scholarship – Received for excellent academic performance in BS degree.
🎓 Gazipur District Council & Dutch-Bangla Bank Scholarship – Awarded for exceptional results in HSC.
📜 Government Scholarship (SSC Exam) – Recognized for academic excellence in secondary education.
🏅 General (Merit) Scholarship – Received for outstanding performance in class eight.
❤️ Best Blood Donor Award – Honored by ‘BADHAN’ (A Voluntary Blood Donors Organization), University of Dhaka, for humanitarian service.

Publication Top Notes:
  • 🧪 Green synthesis of zinc oxide nanoparticles using Allium cepa L. waste peel extracts and its antioxidant and antibacterial activities – MF Islam, S Islam, MAS Miah, AKO Huq, AK Saha, ZJ Mou, MMH Mondol, … | Heliyon | 📅 2024 | 📖 30 citations

  • 🔬 Synthesis, spectral characterization, thermal behavior and biological activities study of ternary metal complexes of alanine and 1,8-diaminonapthalene with Co(III), Ni(II) – AKMNA Siddiki, S Islam, S Begum, MA Salam | Materials Today: Proceedings | 📅 2021 | 📖 18 citations

  • ⚗️ Synthesis, spectral characterization and thermal behavior of newly derived La(III), Co(III), and Mn(II) complexes with Schiff base derived from methionine and salicylaldehyde – S Islam, AKMNA Siddiki, S Begum, MA Salam | Open Journal of Inorganic Chemistry | 📅 2018 | 📖 17 citations

  • 🍌 Physicochemical and Functional Properties of Banana Starch and Its Alternative Returns – MASM, Shariful Islam, Nusrat Abedin, Md. Nazmul Hasan, Md. Faridul Islam … | Current Research in Nutrition and Food Science | 📅 2023 | 📖 9 citations

  • 🥝 Enzymatic extraction of green banana resistant starch for future food preparation: Structural, physicochemical and functional characterization – S Islam, MAS Miah, MF Islam, KJ Tisa, MMH Mondol | Future Foods | 📅 2024 | 📖 7 citations

  • 🌱 HPLC-DAD analysis of water-soluble vitamins (B1, B2, B3, B5, B6, C and Biotin) and fat-soluble vitamins (A, D, E, K1 and β-carotene) in commonly consumed pulses in Bangladesh – MM Rashid, S Islam, MN Uddin, MZU Al Mamun, MJ Abedin, … | Applied Food Research | 📅 2024 | 📖 4 citations

  • 🌾 Exploring the effects of spontaneous and solid-state fermentation on the physicochemical, functional and structural properties of whole wheat flour (Triticum aestivum L.) – S Islam, MAS Miah, MF Islam, MNI Bhuiyan, KJ Tisa, MR Naim | Innovative Food Science & Emerging Technologies | 📅 2024 | 📖 3 citations

  • 🍜 Quality assessment and sensory evaluation of green banana starch enriched instant noodles – MF Islam, S Islam, MAS Miah, MNI Bhuiyan, N Abedin, MMH Mondol, … | Applied Food Research | 📅 2024 | 📖 3 citations

  • 🥦 Nutritional composition, bioactive compounds, and pharmacological activities of tossa jute sprout (Corchorus olitorius L.): A potential functional food – S Akter, MA Satter, KS Ahmed, S Biswas, MA Bari, A Das, MA Karim, … | Food Bioscience | 📅 2024 | 📖 1 citation

  • 🍌 Physicochemical, Functional and Health Promoting Properties of Resistant Starch from Green Banana (Musa Paradisiaca) – S Islam, MA Satter, MF Islam, KZ Tisha, MMH Mondol | Functional and Health Promoting Properties of Resistant Starch from Green … | 📅 2023 | 📖 1 citation

📌 Conclusion:

Shariful Islam’s expertise in analytical and food chemistry, strong research impact, and dedication to scientific advancement make him an ideal candidate for the Young Scientist Award. His innovative approaches in functional food research and nanoencapsulation position him as a future leader in the field, driving scientific progress for global health and sustainability. 🌍✨