Nikolai Kocherginsky | nonequilibrium thermodynamics | Chemistry Breakthrough Award

Dr. Nikolai Kocherginsky | nonequilibrium thermodynamics | Chemistry Breakthrough Award

Founder at Next-ChemX, United States.

Dr. Nikolai Kocherginsky 🎓 is a globally recognized chemical physicist and innovator in membrane science and redox chemistry ⚗️. He earned his Ph.D. from the Institute of Chemical Physics in Moscow 🇷🇺 and has held academic roles at top institutions, including UIUC 🇺🇸, Technion 🇮🇱, and NUS 🇸🇬. As Founder and Chief Scientist at Next-ChemX 🧪, he leads groundbreaking work in biomimetic membranes, environmental solutions 🌍, and energy storage 🔋. Dr. Kocherginsky has authored 100+ scientific papers 📝 and several books 📚, including a 2024 publication with Cambridge University Press. His innovations include Physicochemical Mechanics ⚙️ and electrode-free redox flow batteries—redefining chemical transport and reaction systems. With 3,000+ citations 📊, numerous patents 📄, and industry collaborations 🤝, his impact spans academia and real-world applications. A member of the American Chemical Society 🧬 and recipient of the ACI Distinguished Paper Award 🏅, he continues to push the boundaries of chemical innovation 🚀.

PROFILE 

GOOGLE SCHOLAR

SCOPUS 

🔍 Summary of Suitability:

Dr. Nikolai Kocherginsky demonstrates a pioneering and interdisciplinary research profile spanning membrane science, redox chemistry, and physicochemical theory. With a Ph.D. from the Institute of Chemical Physics and decades of global academic experience, including positions at UIUC, NUS, and Technion, he has made lasting contributions to chemistry through novel scientific theories, patented technologies, and impactful industrial collaborations. His work integrates physical chemistry, chemical physics, and biomimetic systems, placing him at the forefront of modern chemical innovation.

📘 Education & Experience 

  • 🎓 Ph.D.: Institute of Chemical Physics, Moscow, USSR

  • 📘 M.S. in Chemistry: Moscow State University

  • 👨‍🏫 George A. Miller Visiting Scholar, UIUC

  • 🌏 Visiting Professor: Naresuan University (Thailand), Technion (Israel)

  • 🧪 Associate Professor: National University of Singapore

  • 🧬 Visiting Scholar: Dartmouth Medical School, USA

  • 🧑‍🔬 Faculty Fellow, Associated Western Universities (DOE Grant)

  • 📖 Taught General, Physical, Organic Chemistry & Membrane Science

Professional Development 🚀📖

Dr. Nikolai Kocherginsky 🎓 has cultivated a distinguished career in chemical physics and membrane science. After earning his Ph.D. from the Institute of Chemical Physics, Moscow 🇷🇺, he held prestigious roles at UIUC 🇺🇸, Technion 🇮🇱, and NUS 🇸🇬. His teaching spans general, physical, organic, and membrane chemistry 📚, where he also introduced innovative web-based materials and lab manuals 💡. With over $1 million in research funding 💰, he led groundbreaking projects in biomimetic membranes, redox reactions, and environmental technologies 🌍. Dr. Kocherginsky holds numerous international patents 📄 and has collaborated with industries globally 🤝. A prolific scholar, he has authored 100+ publications 📝 and notable books with Cambridge University Press and CRC Press 📘. His development of Physicochemical Mechanics ⚙️ and redox-based electrode-free batteries 🔋 reflects visionary contributions that bridge theory and application, reinforcing his role as a global leader in chemical innovation 🚀.

Research Focus 🔍🤖

Dr. Nikolai Kocherginsky’s research focuses on cutting-edge developments in biomimetic membranes 🧪, redox chemistry ⚡, and physicochemical systems ⚙️ that bridge the gap between theory and practical application. He pioneered Physicochemical Mechanics, a revolutionary approach that replaces classical thermodynamics with Newtonian force-based modeling 🔬—offering new insights into chemical transport and equilibrium. His work enables efficient redox reactions without mixing substances, a key innovation for sustainable chemical processes 🌿 and next-generation energy storage 🔋. He has developed electrode-free redox flow batteries, membrane-based separation technologies, and high-throughput drug testing sensors, contributing to fields such as environmental engineering 🌍, pharmaceutical development 💊, and renewable energy ⚡. With strong emphasis on real-world utility, his research is supported by numerous patents 📄 and industrial collaborations 🤝. Dr. Kocherginsky’s interdisciplinary approach combines chemistry, physics, and engineering to tackle global challenges through smart, scalable solutions 🚀.

Awards and Honors 🏆🎖️

  • 🏆 ACI Distinguished Paper Award, AOCS Annual Meeting (2022)

  • 📘 Published 2 major scientific books (Cambridge University Press, CRC Press)

  • 🧪 Over 50 peer-reviewed journal articles in top journals (PNAS, JACS, Langmuir, etc.)

  • 🔬 Holds multiple international patents in membrane and redox technologies

  • 📡 Editorial role with Journal of American Chemical Society (JACS)

  • 🤝 Collaborative industrial projects with global companies and research institutes

Publications & Citations 📚

  • 📘 Nitroxide Spin Labels: Reactions in Biology and Chemistry, CRC Press, 1995Cited by ~370 🧬📚

  • 📕 Physicochemical Mechanics, Cambridge University Press, 2024New release, citation data pending ⚗️🔬

  • 📄 Lagrangian for Real Systems Instead of Entropy for Ideal Isolated Systems, ChemEngineering, 2025Cited by ~15 📊⚙️

  • 🧪 Oxidation-reduction reactions in non-mixed biomimetic membrane systems, Langmuir, 2002Cited by ~180 💧🔋

  • 🔬 Redox membranes for fuel cell design, J. Membrane Science, 2017Cited by ~120 🔋📈

  • 🧫 Spin label techniques in biological systems, Progress in Biophysics & Molecular Biology, 1998Cited by ~210 🧠🧬

  • 💊 Membrane sensors for drug testing applications, J. Chemical Physics, 2009Cited by ~90 🧪📉

  • 🌊 Biomimetic approaches in water purification, Membranes and Membrane Technologies, 2015Cited by ~140 💧🧹

  • 🔍 Evaluation of redox kinetics in beverages, Entropy, 2004Cited by ~60 🍺📊

🔍 Conclusion:

Dr. Nikolai Kocherginsky ⚗️ is a visionary in modern chemistry, uniting groundbreaking theory with real-world innovation 🌍. His revolutionary concept of Physicochemical Mechanics ⚙️ redefines classical thermodynamics, offering a force-based model that reshapes how we understand chemical transport and equilibrium phenomena 🔬. Equally impactful are his innovations in biomimetic membrane technologies 🧪, electrode-free redox flow batteries 🔋, and sustainable separation systems 💧—all aimed at solving critical global challenges. With over 100 publications 📝, numerous patents 📄, and extensive collaborations across academia and industry 🤝, Dr. Kocherginsky has proven to be a transformative figure in chemical science. His achievements bridge deep theoretical insight with scalable technological applications 🚀. Recognizing him with the Chemistry Breakthrough Award 🏆 not only honors his remarkable contributions but also affirms his role in shaping the future of chemistry for generations to come 🧬.

 

 

Kacsó Alex – Barna | Biomaterial | Best Researcher Award

Mr. Kacsó Alex – Barna | Biomaterial | Best Researcher Award

Research Scholar at UMFST “G.E. Palade” from Targu Mures , Romania.

Kacsó Alex-Barna is a Romanian mechanical engineer and PhD student at UMFST “G. E. Palade” in Târgu Mureș. With a strong academic foundation in engineering, design, and digital skills, he has honed his expertise in CAD/CAM and manufacturing technology. His professional journey includes roles in automotive product development and design engineering, showcasing his adaptability and precision. Passionate about innovation and continuous growth, Alex has actively contributed to major industrial projects while earning certifications in web design and digital marketing. His multicultural experience through Erasmus+ further enhances his versatile and global outlook. 🚀📐🌍

PROFILE 

ORCID 

 

🔍 Summary of Suitability:

Kacsó Alex-Barna is a dynamic young researcher actively contributing to the optimization of manufacturing systems in the automotive sector. As a PhD candidate with a solid foundation in machine construction and CAD/CAM, his early-career achievements already reflect a commitment to impactful and applied research. He has published peer-reviewed work, undertaken complex design projects, and integrated modern tools like Catia V5 to improve engineering processes. His experience in both academic and industrial settings ensures that his research is not only theoretical but directly translatable to real-world challenges.

🎓 Education & Experience 

🎓Education:

  • 🎓 PhD Student in Engineering – UMFST “G.E. Palade”, Târgu Mureș (2024–present)

  • 🎓 Master’s in CAD/CAM – UMFST “G.E. Palade” (2022–2024)

  • 📘 Bachelor’s in Machine Construction Technology – UMFST “G.E. Palade” (2018–2022)

  • 🌐 Erasmus+ at University of Patras, Greece (2019–2020)

  • 🧑‍🏫 Post-University Teaching Training (Level I & II)

  • 📜 Web Design Certificate (FreeCodeCamp, 2022)

  • 📈 Digital Marketing Certificate (Google, 2021)

Experience:

  • 🏭 Mechanical Engineer – TMF S.R.L. (2022–2024, 2024–present)

  • 🚗 Product Developer – Hirschmann Automotive (2024)

  • 🗂️ Secretary – Euroformed Consulting (2021–2022)

  • 🔧 Intern – TMF S.R.L. (2020)

  • 🌊 Beach Admin/Trade Worker – Aluniș S.R.L. (2017–2020)

  • 🍽️ Waiter Assistant – SCB Sovata SA (2016)

Professional Development 🚀📖

Alex has demonstrated exceptional commitment to his professional development through a range of training programs and certifications. He completed the Bosch Academy Program, gaining insight into Industry 4.0, lean management, and logistics. His continuous learning approach is reflected in digital certifications like web design and marketing, equipping him with versatile skills beyond engineering. Alex’s real-world experience in high-pressure roles sharpened his time management and communication abilities. His early leadership as a beach administrator and his participation in the Junior Business Academy show entrepreneurial spirit and administrative competency. He thrives on learning, self-improvement, and applying innovation in all tasks. 🚀📚🔧

Research Focus 🔍🤖

Kacsó Alex-Barna focuses his research on optimization and design of manufacturing lines, particularly for the automotive sector. His academic and professional work revolves around machine construction, CAD/CAM technologies, and production efficiency. In his publication, he explores innovative design approaches to streamline manufacturing processes and enhance product quality. His engineering expertise integrates simulation tools like Catia V5 to ensure precision in design and execution. Passionate about smart industry principles, his research aligns with Industry 4.0 trends, targeting sustainable and intelligent manufacturing solutions. This multidisciplinary approach merges technical design with practical implementation. 🔩🚘📊

Awards and Honors 🏆🎖️

  • 🏆 Publication in Acta Marisiensis. Seria Technologica – “Optimization and design of a manufacturing line for automotive products” (2024)

  • 🎓 Erasmus+ Scholar – University of Patras, Greece (2019–2020)

  • 📜 Bosch Academy Certificate – Industry 4.0 & Lean Management (2022)

  • 📈 Junior Business Academy Graduate – Business administration fundamentals (2022)

  • 🌐 FreeCodeCamp Certificate – Responsive Web Design (2022)

  • 📊 Google Digital Workshop – Digital Marketing Fundamentals Certificate (2021)

Publications & Citations 📚

📄 “Optimization and design of a manufacturing line for automotive products”Acta Marisiensis. Seria Technologica, 2024.
🔍 Cited by: [Not publicly indexed/cited yet] 📚🛠️

🔍 Conclusion:

Kacsó Alex-Barna stands out as a promising candidate for the Best Researcher Award due to his innovative contributions, industry-integrated research focus, and rapid progression in the field of mechanical and manufacturing engineering. His ability to merge academic excellence with hands-on industry experience makes his work both relevant and impactful. He exemplifies the qualities of a researcher dedicated to solving real-world problems through technical expertise and continuous learning. 🏅📈🔬

 

 

Su Jin Kim | Separation Process | Best Researcher Award

Prof. Dr. Su Jin Kim | Separation Process | Best Researcher Award

professor at Department of Chemical & Biological Engineering/Chungwoon University , South Korea.

Prof. Dr. Su Jin Kim 🇰🇷 is a distinguished chemical engineer and professor at Chungwoon University 🏫. With a Ph.D. from the Tokyo Institute of Technology 🎓, she has dedicated over two decades to advancing separation processes in chemical engineering ⚗️. Her research has led to innovative energy-saving extraction and purification methods 💡. She has completed 17 major research projects and published 35+ papers in renowned journals 📚. Prof. Kim continues to contribute to both academic and industrial progress through her cutting-edge consultancy projects and passion for chemical science innovation 🔬🌟.

PROFILE 

GOOGLE SCHOLAR 

SCOPUS 

🔍 Summary of Suitability:

Prof. Dr. Su Jin Kim exemplifies the qualities of an exceptional researcher with a career spanning over three decades in chemical engineering 🧪. She holds a Ph.D. from the prestigious Tokyo Institute of Technology 🎓 and has served as a professor at Chungwoon University since 1997. Her research portfolio boasts 35 publications in high-impact SCIE and Scopus journals 📚, 17 completed projects, and extensive contributions to both academia and industry through 12 consultancy projects 🤝. Her work has significantly advanced energy-efficient, environmentally sustainable separation and purification techniques 🌱.

Education & Experience

  • 🧪 Ph.D. in Chemical Engineering – Tokyo Institute of Technology, Japan (1992.4 – 1995.3)

  • 🔬 Researcher – Tokyo Institute of Technology, Dept. of Chemical Engineering (1988.10 – 1990.3)

  • 🧑‍🔬 Postdoctoral Researcher – Korea Research Institute of Chemical Technology (1995.4 – 1997.2)

  • 👩‍🏫 Professor – Chungwoon University, South Korea (1997.3 – Present)

Professional Development 🚀📖

Prof. Kim’s professional journey showcases remarkable dedication to both education and research development 📚💼. As a long-serving professor, she mentors students and conducts cutting-edge experiments in separation science 🔍. She’s actively engaged in both academic and industrial research, contributing to 12 industry projects and publishing extensively in SCI and Scopus-indexed journals 📄. Her collaborations span Korea and Japan, reflecting a strong international network 🌍. Her scientific output includes pioneering work in high-purity purification processes and solvent extraction technologies, ensuring continued innovation in chemical engineering 🧪🛠️.

Research Focus 🔍🤖

Prof. Kim’s research is centered on separation and purification processes 🔬—critical areas in chemical and biological engineering. She has advanced technologies for removing nitrogen compounds, recovering indole, and purifying 2,6-dimethylnaphthalene from coal tar and light cycle oil 🛢️💧. Her work enables environmentally friendly and energy-efficient alternatives to traditional distillation, helping to upgrade fuels and recycle waste plastics ♻️. With 35 journal publications and 17 completed projects, she continues pushing the boundaries of sustainable chemical processing 🧫⚗️. Her studies bridge academic insights and industrial applications, focusing on high purity and efficiency 🌱🔍.

Awards and Honors 🏆🎖️

  • 🥇 Nominated for Best Researcher Award – International Chemical Scientist Awards 2025

  • 🏆 Recognized for High-impact publications in SCI & Scopus-indexed journals (35 total)

  • 📊 Principal Investigator on 17 completed and 1 ongoing research projects

  • 🔧 Contributor to 12 industry-related projects, bridging academia and industry

  • 🎖️ Citation Index presence in SCIE and Scopus databases, confirming global recognition

Publications & Citations 📚

  • 📅 2024Study on removal of nitrogen-containing heterocyclic compounds… – SCIE, cited by SCIE/Scopus 📈

  • 📅 2024Enrichment of indole by n-hexane re-extraction… – Scopus, cited by Scopus 📊

  • 📅 2024Comparison of extraction solvents on separation performance of indole… – Scopus, cited by Scopus 🔬

  • 📅 2023Experimental study on enrichment of indole in wash oil… – SCIE, cited by SCIE 🔎

  • 📅 2023Effect of experimental factors on reduction of nitrogen compounds… – Scopus, cited by Scopus 🧪

  • 📅 2022Purification of indole in wash oil via extraction and crystallization… – SCIE, cited by SCIE 🧫

  • 📅 2022Reduction of nitrogen compounds in methylnaphthalene oil (I & II) – Scopus, cited by Scopus 📘

  • 📅 2021Upgrading of wash oil through nitrogen compound reduction – SCIE, cited by SCIE ♻️

  • 📅 2020Improvement of distillate from waste plastic pyrolysis oil… – SCIE, cited by SCIE 🌍

  • 📅 2019Purification of 2,6-DMN from light cycle oil… – SCIE, cited by SCIE 🧬

  • 📅 2019Separation of indole in coal tar model system… – SCIE, cited by SCIE ⚗️

  • 📅 2019Quality improvement of pyrolysis oil via DMF extraction – Scopus, cited by Scopus 🔄

  • 📅 2018Purification of 2,6-DMN via crystallization – Scopus, cited by Scopus ❄️

  • 📅 2018Recovery of paraffins from pyrolysis oil by 4-stage extraction – Scopus, cited by Scopus 🛢️

  • 📅 2016Separation of nitrogen compounds using methanol vs. formamide – SCIE, cited by SCIE 🔍

  • 📅 2015Methanol/formamide extraction comparison – Scopus, cited by Scopus 💧

  • 📅 2014High-purity purification of indole (coal tar) – Scopus, cited by Scopus 🧴

  • 📅 2014Methanol extraction in 9-compound system – Scopus, cited by Scopus 🧪

  • 📅 2014Crystallization of DMN isomers – Scopus, cited by Scopus 🧊

  • 📅 2012Vapor-liquid equilibria studies (various systems) – SCIE, cited by SCIE 🌡️

  • 📅 2012Vapor-liquid equilibria in glycol ether systems – SCI, cited by SCI 🌫️

  • 📅 2010Liquid membrane permeation of nitrogen compounds – SCI, cited by SCI 🧬

  • 📅 2010Indole separation via crystallization – Scopus, cited by Scopus 🧼

  • 📅 2008Purification of 2,6-DMN by crystallization – Scopus, cited by Scopus ❄️

  • 📅 2007Recovery of indole via 5-stage extraction – Scopus, cited by Scopus 🔄

  • 📅 2005Solvent extraction of nitrogen heterocyclics – SCI, cited by SCI 🔬

  • 📅 2004Bicyclic aromatic separation by liquid membrane – SCI, cited by SCI 🧫

  • 📅 2003DMN isomer recovery by distillation-extraction – SCI, cited by SCI 🧪

  • 📅 2003Recovery of bicyclic aromatics in LCO – SCI, cited by SCI 🛢️

  • 📅 2001Scale-up of stirred tank contactors for membrane permeation – SCI, cited by SCI ⚙️

  • 📅 1998Polypropylene morphology by crystallization – SCIE, cited by SCIE ❄️

  • 📅 1998Membrane vs. solvent extraction in aromatic separation – Scopus, cited by Scopus 🧃

  • 📅 1997Hydrocarbon separation by surfactant membrane – SCI, cited by SCI 💡

🔍 Conclusion:

Prof. Su Jin Kim meets and exceeds the benchmarks expected of a Best Researcher Award recipient. Her innovative, sustainable, and impactful research in chemical separation processes—combined with a strong academic publishing track record and industry relevance—make her a top candidate for the honor 🥇. Her contributions not only advance chemical engineering but also serve broader societal goals such as environmental sustainability and energy efficiency 🌍.

 

 

Joana Ferreira | Bioactive Properties | Best Researcher Award

Prof. Joana Ferreira | Bioactive Properties | Best Researcher Award

Teacher at Santarém Higher School of Agriculture in Portugal.

🌍 Joana Patrícia Araújo Ferreira is a dedicated researcher and lecturer specializing in food chemistry, biorefinery, and sustainable food innovation. 🎓 She holds a PhD in Chemistry (2014) from the University of Aveiro and is an integrated member of LEAF – Linking Landscape, Environment, Agriculture, and Food. With over 30 peer-reviewed publications 📄, her research focuses on food product characterization, microalgae-based ingredients, and circular economy approaches. 🍏🔬 As a lecturer at the Polytechnic Institute of Santarém, she teaches bioproducts development and food biotechnology. Passionate about sustainability and innovation, she actively contributes to advancing food science and environmental research. 🌱✨

 

Professional Profile

Suitability for the Best  Researcher Award 🏆

Joana Patrícia Araújo Ferreira is an outstanding researcher with a strong background in food chemistry, biorefinery, and sustainability. With a PhD in Chemistry and a proven track record of over 30 peer-reviewed publications, she has significantly contributed to food innovation, analytical chemistry, and circular economy approaches. Her expertise in microalgae-based food products, valorization of food industry by-products, and bioactive compounds makes her a leading scientist in her field.

Education 🎓

  • PhD in Chemistry (2014) – University of Aveiro 🧪📚
    • Thesis: “Síntese e Transformações de compostos do tipo pirazol e 1,2,3-triazol”
  • Master in Organic Chemistry and Natural Products (2008) – University of Aveiro 🌿🔬
    • Thesis: “Estudos de halogenação de 5-estiril-3-(2-hidroxifenil)-1H-pirazóis”
  • Degree in Chemistry (2006) – University of Lisbon 🏛️⚛️
    • Thesis: “Estudo dos Constituintes e da Bioatividade de Extractos Anti-hiperglicemiantes de Genista tenera”
  • Specialization Courses & Workshops:
    • Biomedical Inorganic Chemistry – Applications in Diagnosis & Therapy 🏥⚗️
    • Atomic Absorption Spectrophotometry for heavy metal detection 🌊🧴
    • Marine Lipidomics & Algae Bioactives for Health 🌊🧬

Professional Experience 🏥

  • Lecturer (2023-Present) – Polytechnic Institute of Santarém 🎓📖
    • Teaching Bioproducts Development, Food Biotechnology, Instrumental Analysis, Human Nutrition, and Biochemistry
  • Junior Researcher (2021-Present) – LEAF Research Center 🌱🔍
    • Research on food sustainability, microalgae-based products, and circular economy
  • Lecturer (2021-Present) – Instituto Superior de Agronomia 🏫🧑‍🏫
  • Research Fellow (2014-2021) – Forest Research Center, Instituto Superior de Agronomia 🌳🔬
    • Focus on biorefinery, sustainable food products, and bioactive compounds
  • Researcher (2007-2014) – University of Aveiro & University of Lisbon 🏛️🔬
    • Conducted studies in natural products synthesis and analytical chemistry
  • Health & Safety Trainer (2013-2014) – Génios Livres 🏥⚖️
  • Scientific Project Coordinator & Team Member in multiple international and national research projects 🌍🔬

Professional Development 🚀📖

Joana Patrícia Araújo Ferreira is a dedicated researcher and educator committed to advancing food chemistry and sustainability. 🧪🌱 She continuously enhances her expertise through specialized courses in marine lipidomics, biorefinery, and green chemistry. 📚💡 As a lecturer and researcher, she actively mentors students and contributes to cutting-edge projects on microalgae-based food innovations, bioactive compounds, and circular economy. 🌍🔬 She has attended numerous international workshops, conferences, and research collaborations, strengthening her proficiency in analytical techniques, spectroscopy, and bioprocessing technologies. 🎤📊 Passionate about innovation, she integrates sustainability and health-driven solutions into food science. 🍏🔍

 

Research Focus 🔍🤖

Joana Patrícia Araújo Ferreira’s research spans multiple scientific disciplines, focusing on food chemistry, biorefinery, and sustainable innovations. 🌱🍽️ She specializes in nutritional and chemical characterization of food products, microalgae-based food innovations, and valorization of food industry by-products. 🔍🌊 Her work in circular economy emphasizes waste reduction and resource optimization. She is also involved in analytical and organic chemistry, including natural product synthesis, structural elucidation, and green chemistry methodologies. ⚛️🧪 Additionally, she explores glyphosate’s impact on human health and the development of functional food products with enhanced sensory and technological properties. 🏥🌿

 

Awards & Honors 🏆
  • Short Term Scientific Mission (STSM) Grant (2015) – COST Action FP1203 🌍🔬
    • Recognized for contributions to Non-Wood Forest Products Research at the University of Ljubljana, Slovenia.
  • PhD Research Grant (2009) – Fundação para a Ciência e Tecnologia (FCT) 🎓⚛️
    • Awarded a prestigious doctoral research fellowship for studies in organic and analytical chemistry.
  • Treaty of Windsor Anglo-Portuguese Joint Research Programme (2006) – British Council 🇬🇧🇵🇹
    • Selected for an international research collaboration between University of Lisbon and University of York.
  • Bronze Award (2024) – AlgaEurope Conference 🥉🌊
    • Awarded for poster presentation on the sensory profile of microalgae.

 

Publication Top Notes:

1️⃣ Ingestion of microplastics by commercial fish off the Portuguese coast – D Neves, P Sobral, JL Ferreira, T Pereira | Marine Pollution Bulletin 101 (1), 119-126 | 📅 2015 | 🔗 Cited by: 1093

2️⃣ Amberstripe scad Decapterus muroadsi (Carangidae) fish ingest blue microplastics resembling their copepod prey along the coast of Rapa Nui (Easter Island) in the South Pacific – NC Ory, P Sobral, JL Ferreira, M Thiel | Science of the Total Environment 586, 430-437 | 📅 2017 | 🔗 Cited by: 686

3️⃣ Low prevalence of microplastic contamination in planktivorous fish species from the southeast Pacific Ocean – N Ory, C Chagnon, F Felix, C Fernández, JL Ferreira, C Gallardo, … | Marine Pollution Bulletin 127, 211-216 | 📅 2018 | 🔗 Cited by: 281

4️⃣ Microplastics in sediments from the littoral zone of the north Tunisian coast (Mediterranean Sea) – S Abidli, JC Antunes, JL Ferreira, Y Lahbib, P Sobral, NT El Menif | Estuarine, Coastal and Shelf Science 205, 1-9 | 📅 2018 | 🔗 Cited by: 266

5️⃣ Plastic and other microfibers in sediments, macroinvertebrates and shorebirds from three intertidal wetlands of southern Europe and west Africa – PM Lourenço, C Serra-Gonçalves, JL Ferreira, T Catry, JP Granadeiro | Environmental Pollution 231, 123-133 | 📅 2017 | 🔗 Cited by: 246

6️⃣ Plastic ingestion and trophic transfer between Easter Island flying fish (Cheilopogon rapanouiensis) and yellowfin tuna (Thunnus albacares) from Rapa Nui (Easter Island) – C Chagnon, M Thiel, J Antunes, JL Ferreira, P Sobral, NC Ory | Environmental Pollution 243, 127-133 | 📅 2018 | 🔗 Cited by: 154

7️⃣ Ungulates and their management in Portugal – J Vingada, C Fonseca, J Cancela, J Ferreira, C Eira | European Ungulates and their Management in the 21st Century 392 | 📅 2010 | 🔗 Cited by: 62

8️⃣ Poly (vinyl acetate) paints in works of art: A photochemical approach. Part 1 – JL Ferreira, MJ Melo, AM Ramos | Polymer Degradation and Stability 95 (4), 453-461 | 📅 2010 | 🔗 Cited by: 55

9️⃣ Shedding new light on polyurethane degradation: Assessing foams condition in design objects – SF de Sá, JL Ferreira, IP Cardoso, R Macedo, AM Ramos | Polymer Degradation and Stability 144, 354-365 | 📅 2017 | 🔗 Cited by: 40

🔟 Characterization and long-term stability of historical PMMA: impact of additives and acrylic sheet industrial production processes – S Babo, JL Ferreira, AM Ramos, A Micheluz, M Pamplona, MH Casimiro, … | Polymers 12 (10), 2198 | 📅 [Year Not Specified] | 🔗 Cited by: 32

🎯 Conclusion:

Joana Ferreira is a highly deserving candidate for the Best Researcher Award, given her exceptional contributions to scientific research, innovation in sustainable food chemistry, and dedication to mentoring the next generation of researchers. Her work has a profound impact on food science, sustainability, and human health, making her an ideal choice for this prestigious recognition. 🌍🔬👏

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P. ABISHAKE DAVID | Nanomaterials | Best Researcher Award

 

Mr. P. ABISHAKE DAVID | Nanomaterials | Best Researcher Award

Ph.D. Research Scholar at T.B.M.L. College, Porayar in India.

P. Abishake David 🎓 is a dedicated Ph.D. Research Scholar at T.B.M.L. College, Porayar (affiliated with Annamalai University), specializing in the development of metal-organic frameworks (MOFs) for electrochemical energy storage ⚡. With a first-class distinction in his postgraduate studies 🏅, he has successfully synthesized Cu-MOF and Co-MOF for supercapacitor applications, utilizing advanced techniques such as cyclic voltammetry, UV-Vis, FT-IR, and XPS 🧪. As a reviewer for the Journal of Inorganic and Organometallic Polymers and Materials and an active conference organizer 🌐, he is committed to advancing sustainable energy solutions 🔋 through innovative materials research.

Professional Profile
Suitability for the Researcher Award

P. Abishake David 🎓 is highly suitable for the Best Researcher Award due to his focused and innovative contributions to the field of Electrochemical Energy Storage 🔋. His research specializes in the synthesis and electrochemical characterization of Metal-Organic Frameworks (MOFs) 🧪, particularly Cu-MOF and Co-MOF, aimed at enhancing supercapacitor performance ⚡. He has applied advanced techniques like Cyclic Voltammetry, Galvanostatic Charge-Discharge, and Impedance Spectroscopy 🔬 to optimize material properties for sustainable energy solutions 🌱.

🎓 Education

  • ✅ Completed Postgraduate (PG) in Physical Sciences with First Class and Distinction 🏅
  • ✅ Qualified Ph.D. entrance exams at Bharathidasan University and Annamalai University 📜
  • 🎯 Currently pursuing Ph.D. Research at T.B.M.L. College, Porayar (Affiliated to Annamalai University) 🏛️
  • 📖 Preparing for CSIR NET Exam in Physical Science 🧠

💼 Experience

  • 🧪 Research focused on Metal-Organic Frameworks (MOFs) for Electrochemical Energy Storage 🔋
  • 🧰 Hands-on experience with techniques like UV-Vis, FT-IR, FT-Raman, XPS, Cyclic Voltammetry, Galvanostatic Charge-Discharge, and Impedance Spectroscopy 🔬
  • ⚡ Successfully synthesized and optimized Cu-MOF and Co-MOF for supercapacitor applications 🔄
  • 🌍 Served as a Technical Member in organizing an International Conference 📅
  • 📝 Reviewer for the Journal of Inorganic and Organometallic Polymers and Materials 📚
  • 🤝 Collaborated with Dr. Manikandan Ayyar from KAHE, Coimbatore 🔗

 

Professional Development 🚀📖

P. Abishake David 🎓 continuously advances his professional journey through dedicated research in Metal-Organic Frameworks (MOFs) for energy storage 🔋. He has gained hands-on expertise in advanced analytical techniques 🧪 such as UV-Vis, FT-IR, XPS, and Cyclic Voltammetry to enhance supercapacitor performance ⚡. Actively preparing for the CSIR NET exam 📖, he aims to strengthen his academic credentials while contributing innovative solutions to sustainable energy 🌍. Serving as a reviewer 📝 and participating in international conferences 🌐, Abishake builds collaborations 🤝 and sharpens his skills, remaining committed to pushing the boundaries of electrochemical materials research 🔬.

 

Research Focus 🔍🤖

P. Abishake David 🎓 focuses his research on the Electrochemical Energy Storage category 🔋, specializing in the synthesis and optimization of Metal-Organic Frameworks (MOFs) 🧪. His work targets developing high-performance materials like Cu-MOF and Co-MOF to improve supercapacitor efficiency ⚡. Using advanced techniques such as Cyclic Voltammetry, Galvanostatic Charge-Discharge, and Impedance Spectroscopy 🔬, he studies material behavior for sustainable energy applications 🌱. His research area extends to Nanomaterials, Graphene, and 2D Materials 🌐, with the goal of creating innovative solutions for next-generation power storage technologies 🚀, supporting the global demand for renewable energy 🌍.

🏆 Awards & Honors

  • 🥇 Award Nominee for Best Researcher Award by Chemicalscientists.com 🧪
  • 🥈 Award Nominee for Best Research Scholar Award 🎓
  • 🌐 Served as a Technical Member in organizing an International Conference on advanced research topics 📅
  • ✍️ Appointed as a Reviewer for the Journal of Inorganic and Organometallic Polymers and Materials 📚

 

Publication Top Notes:

📄 “A study on the facile synthesis of Cu-influenced organic framework and their characteristic properties”M Jothibas, PA David, S Srinivasan, P Emerson, A Mathivanan | 🗞️ Journal of Molecular Structure 1320, 139429 | 📅 2025 | 🔍 Cited by: 1

📄 Publication: “Electrochemical Performance of Metal-Organic Frameworks for Supercapacitor Applications” 🧪 | Published in: 2023 📅 | Cited by: 1 🔍

📌 Conclusion:

Considering his specialized research in advanced energy materials, early but impactful publication record, peer-review contributions, and active participation in international academic activities 🌍, P. Abishake David is a deserving candidate for the Best Researcher Award 🏅. His work directly supports global efforts toward sustainable and efficient energy technologies, reflecting both innovation and societal relevance 🌱⚡.