Yoon Dae Hyeob | Nanotechnology | Chemical Research Excellence Award

Mr. Yoon Dae Hyeob | Nanotechnology | Chemical Research Excellence Award

Undergraduate Researcher, Chungbuk National University (CBNU) in  South Korea.

🔬 Short Biography 🌿💊📚

Dae Hyeob Yoon 🎓 is an enthusiastic undergraduate researcher in Mechanical Engineering at Chungbuk National University (CBNU) 🏛️. With a passion for micro/nanotechnology 🔬, sensors 📡, and MEMS, he has already co-authored a scientific publication in Applied Sciences titled “Development of a Flexible and Conductive Heating Membrane…” 📄. His early engagement in research has led to meaningful contributions to wearable electronics, showcasing innovative applications in smart textiles 👕. He received recognition at the UROP Achievement Presentation 🏅 and has actively shared his work through poster presentations at KSME 🇰🇷 and the upcoming EKC in Austria 🇦🇹. Dae Hyeob’s commitment to cutting-edge research and hands-on experience highlights his growing potential in engineering and nanotech-based innovation 🚀.

PROFILE 

Orcid 

🔍 Summary of Suitability:

Dae Hyeob Yoon has demonstrated exceptional promise in chemical and materials research at an early academic stage. As an undergraduate researcher, he has already contributed to high-impact work involving electroless plating and nanofiber membrane engineering—fields critical to chemical and materials innovation. His ability to co-author a peer-reviewed journal article in Applied Sciences and present at national and international forums underscores his commitment and capability in advancing chemical research.

🔹 Education & Experience 

Dae Hyeob Yoon 🎓 is currently pursuing his Bachelor of Science degree in Mechanical Engineering at Chungbuk National University (CBNU) 🏫. As an undergraduate researcher, he actively explores fields like micro/nanotechnology ⚛️, sensors 🔍, and MEMS (Microelectromechanical Systems) ⚙️. His most notable experience includes co-authoring a research article published in the journal Applied Sciences 🧪. Dae Hyeob has also participated in industry-relevant research projects, including one consultancy project, demonstrating early exposure to applied engineering solutions 🏗️. He presented his findings at major academic platforms like the KSME conference 🗣️ and is scheduled to present internationally at EKC 2025 🇦🇹. His award at the UROP presentation reflects his strong engagement in academic research and innovation at the undergraduate level 🥇.

🔹Professional Development

Dae Hyeob Yoon 💡 has shown commendable growth through professional development in research, academic collaboration, and applied innovation. His publication in Applied Sciences marks a significant milestone early in his academic career 📘. Engaging in one consultancy/industry-based project 📊 has helped him bridge theoretical knowledge with real-world applications. He has actively presented posters at both national and international conferences such as KSME 🏛️ and the upcoming EKC in Austria 🌍. These platforms not only validate his technical contributions but also enhance his communication and scientific outreach skills 🗣️. Through these experiences, Dae Hyeob has gained confidence in publishing, presenting, and networking with peers and professionals. Though still at the undergraduate level, he displays a trajectory that aligns with global standards of academic excellence and practical impact 🚀.

🛠️ Skills & Expertise

Dae Hyeob Yoon 🧠 possesses a strong set of technical and research-based skills that align with his focus on mechanical engineering and nanotechnology. He is proficient in experimental design 🔬, data analysis 📊, and material characterization techniques essential for micro/nano research. His hands-on experience with electroless plating, nanofiber fabrication, and flexible electronics 💡 showcases his laboratory competency. Dae Hyeob demonstrates excellent scientific writing ✍️, having contributed to a peer-reviewed publication. He is skilled in poster preparation and oral presentations 🗣️, evident from his active participation in conferences such as KSME and EKC. His collaboration in interdisciplinary projects reflects strong teamwork and problem-solving abilities 🤝. Additionally, he shows initiative in learning new tools and adapting to research environments quickly ⚙️. His growing experience with sensors, MEMS, and smart materials further strengthens his technical portfolio, making him a promising researcher for future innovations in wearable and adaptive technologies 🚀.

🔬 Research Focus

Dae Hyeob Yoon’s 🔬 research focus lies at the intersection of micro/nanotechnology, sensors, and MEMS (Microelectromechanical Systems) 🔍. His key interest revolves around the development of scalable, low-voltage, and flexible heating membranes for use in wearable electronics and smart textiles 👕. His co-authored work in Applied Sciences demonstrates innovation using BSA-assisted electroless plating techniques on nanofiber membranes, contributing to advances in flexible and conductive materials ⚗️. The research tackles challenges in mechanical stability, voltage efficiency, and applicability for next-generation electronic textiles ⚡. These studies aim to revolutionize how wearable devices function in health, fitness, and smart environments 🌐. By engaging with real-world engineering applications at the micro/nano scale, Dae Hyeob is addressing limitations in existing sensor technologies while opening up new possibilities for adaptive, lightweight, and cost-effective devices 🧠.

🏆 Awards & Recognitions

  • 🏅 Received award at the Undergraduate Research Opportunities Program (UROP) Achievement Presentation, CBNU

  • 📜 Co-author of a published research paper in Applied Sciences (SCI-indexed journal)

  • 🧪 Selected to present a research poster at the Korean Society of Mechanical Engineers (KSME) Conference

  • 🌍 Scheduled to present at the European Korean Conference (EKC) in Austria, August 2025

Publications & Citations 📚

📄 “Development of a Flexible and Conductive Heating Membrane via BSA-Assisted Electroless Plating on Electrospun PVDF-HFP Nanofibers” — Published in Applied Sciences (MDPI) in 2024, cited by [check current citations on MDPI/Google Scholar] 🔍 https://www.mdpi.com/2076-3417/15/14/8023 📚

🔍 Conclusion:

Dae Hyeob Yoon’s early-stage yet impactful work in chemical-based materials engineering, particularly in nanoscale electroless plating and polymer membrane development, makes him a highly suitable candidate for the Chemical Research Excellence Award. His research not only contributes to fundamental chemical processing but also has real-world applications in next-gen wearable technologies. His trajectory signals future breakthroughs in chemical innovation.

Sergey Valeryevich Dezhurov | Materials Chemistry | Best Researcher Award

Dr.Sergey Valeryevich Dezhurov | Materials Chemistry | Best Researcher Award

Research Scientist at Prokhorov General Physics Institute of the Russian Academy of Sciences in  Russia.

🔬 Short Biography 🌿💊📚

👨‍🔬 Сергей Валерьевич Дежуров is a seasoned Russian chemist . With over 20 years of experience in the field of chemistry and nanotechnology 🧪, he has contributed significantly to scientific innovation. A graduate of Novosibirsk State University, Faculty of Natural Sciences (1996–2001), he specialized in chemistry and later pursued postgraduate studies in bioorganic chemistry 📘. His professional journey spans roles as a chemistry teacher, synthetic chemist, sales and technical manager, and senior research scientist. Currently affiliated with the Institute of General Physics (IOF RAS) and the Research Institute of Applied Acoustics (NIIPA), he focuses on luminescent materials, quantum dots, bioconjugates, and thin-film technologies 🔬. Sergey is the author of 20+ scientific publications and 4 patents, with deep involvement in international and Russian R&D projects. He is passionate about applying scientific knowledge to create real-world solutions, especially in advanced optics and sensor systems 🌍.

PROFILE 

SCOPUS 

🔍 Summary of Suitability:

Sergey V. Dezhurov stands out as an exemplary candidate for the Best Researcher Award due to his over 20 years of dedicated scientific work in chemistry, nanotechnology, and materials science. His deep expertise in quantum dots, polymer composites, bioorganic chemistry, and optical materials has yielded breakthrough innovations with real-world impact. His experience spans both academic and industrial domains, showcasing versatility, technical depth, and strong leadership in high-tech R&D environments.

🔹 Education & Experience 

🎓 Sergey Dежуров completed his undergraduate studies in chemistry at Novosibirsk State University (1996–2001) and advanced his knowledge through postgraduate studies in bioorganic chemistry and management courses 📚. His career began in education and laboratory roles before progressing into industrial research. Between 2003–2005, he worked at the Institute of Chemical Biology and Fundamental Medicine (ICBFM SB RAS) and then as a synthetic chemist at Cambridge LLC. From 2008 onwards, he held research and leadership roles in high-tech centers such as “Nanotech-Dubna” and NIIPA, focusing on quantum dots, polymeric materials, and optical sensors 🧪. He also contributed to technology commercialization and industrial process optimization. Since 2024, he has been working at the Institute of General Physics (IOF RAS) on thin-film technologies for microdisplays and solar cells 🌞. His versatile experience spans R&D, team leadership, and complex instrumentation, establishing him as an accomplished figure in chemical technology and nanomaterials 🌐.

🔹 Professional Development 

🧑‍🔧 Sergey Dежуров’s professional development reflects a commitment to innovation, multidisciplinary collaboration, and continuous learning. He has mastered a variety of specialized software tools such as ChemOffice, OriginLab, and MultiChrom for analytical and synthetic chemistry applications 💻. His hands-on expertise covers organic and colloidal synthesis, design of thixotropic gels, development of bioconjugates, and surface modification of nanoparticles. He has independently acquired knowledge in optical and analytical instrumentation software and is proficient in spoken English 🌍. Sergey has played key roles in developing fluorescent microspheres for cytometry, FRET-based sensor systems, and new-generation luminescent materials. He led process engineering and team management in pilot production setups, demonstrating both technical and leadership skills 🧑‍🏫. His involvement in national and international grant-funded projects has further refined his strategic research and development abilities, keeping him at the cutting edge of applied chemistry, nanotechnology, and material science 🌟.

🏅 Awards and Recognitions

  • 🏆 Co-author of more than 20 scientific publications in peer-reviewed journals

  • 📚 Author of 4 patents in the field of luminescent materials and quantum dots

  • 🎓 Contributor to national and international research projects and grants

  • 🧪 Developer of innovative sensor systems using quantum dot-based FRET

  • 🔬 Recognized for high-impact research in nano-optical materials and bioconjugates

  • 🗣️ Regular participant and presenter at scientific conferences in Russia and abroad

🔬 Research Focus

🧪 Sergey Dежуров’s research is deeply rooted in nanomaterials chemistry, focusing on quantum dots, luminescent compounds, and advanced polymer systems. His work encompasses organic and colloidal synthesis, photoaffinity labeling of biomolecules, and bioconjugation techniques relevant to diagnostics and life sciences 💡. A key part of his research includes thin-film technologies for applications in microdisplays and solar cells, and the development of sensor systems based on FRET principles. Sergey has also designed high-stability semiconductor colloidal quantum dots and customized surface modifications for nanoparticles, tailoring properties like charge, polarity, and dispersibility ⚗️. His innovations support cutting-edge applications in optical sensing, nanobiotechnology, and materials engineering. By bridging chemistry with device-level implementation, his work contributes to the development of real-world technologies in areas like biosensors, optoelectronics, and photonics 🌈. His ongoing efforts ensure the evolution of intelligent, functional nanomaterials that drive future-oriented scientific solutions.

Publications & Citations 📚

📄 “Effect of combustion air humidification on the operation of a biomass boiler – Theoretical analysis”Heliyon, 2025 | 📅 Published: 2025 | 🔁 Cited by: 0 | ✍️ Authors: Dlouhý, T.; Havlík, J.

📄 “Improving the energy effectivity of biomass drying for utilisation in energy systems by combining convective and contact drying”Drying Technology, 2024 | 📅 Published: 2024 | 🔁 Cited by: 0 | ✍️ Authors: Havlík, J.; Dlouhý, T.

🔍 Conclusion:

With a unique blend of scientific creativity, technological innovation, and sustained impact, Sergey V. Dezhurov exemplifies the core values of the Best Researcher Award. His pioneering work in functional nanomaterials and sensor systems has contributed meaningfully to modern chemistry, nanotech-based diagnostics, and advanced materials engineering. His candidacy reflects excellence, leadership, and a forward-looking vision in scientific research .

RAJESWARAN | PHOTOCATALYSIS | Best Researcher Award

Dr. P.RAJESWARAN | PHOTOCATALYSIS | Best Researcher Award

ASSOCIATE PROFESSOR at VEL TECH HIGH TECH Dr.RANGARAJAN Dr,SAKUNTHALA ENGINEERING COLLEGE,CHENNAI,TAMILNADU,India.

🔬 Short Biography 🌿💊📚

Dr. P. Rajeswaran 🎓 is an accomplished academician and researcher in the field of chemistry, with over 14 years of teaching experience in reputed institutions across Tamil Nadu, India 🇮🇳. Holding a Ph.D. in Chemistry with a specialization in Nanoscience and Nanotechnology 🧪 from Bharathiar University, his academic journey began with B.Sc. and M.Sc. degrees in Chemistry followed by an M.Phil. He is currently serving as Associate Professor of Chemistry at Vel Tech High Tech Engineering College, Chennai 🏫. His passion for research is reflected in over 28 SCI/Scopus-indexed publications 📄, spanning topics like photocatalysis, nanomaterials, and environmental remediation. A dedicated mentor and active R&D coordinator, Dr. Rajeswaran continues to shape the next generation of scientists while driving innovation through sustainable chemistry solutions 🌱🔬.

PROFILE 

GOOGLE SCHOLAR 

🔍 Summary of Suitability:

Dr. P. Rajeswaran is a highly accomplished researcher with over 14 years of academic experience and an exceptional track record in the fields of nanoscience, nanotechnology, and environmental chemistry. Holding a Ph.D. in Chemistry, his scholarly excellence is reflected through his prolific publication record—28 SCI/Scopus-indexed journal papers, over 323 citations, an h-index of 12, and consistent involvement in cutting-edge research. He has also supervised Ph.D. scholars, contributed to institutional research development, and secured internal research funding, underscoring his dedication to both discovery and mentorship.

🔹 Education & Experience 

Dr. Rajeswaran’s academic path is steeped in chemical sciences 🧪. He completed his Ph.D. in Chemistry (Nanoscience and Nanotechnology) from Bharathiar University in 2018 🎓, with earlier degrees including an M.Phil. from Vinayaga Missions University and M.Sc./B.Sc. from NMS.S.V.N. College, Madurai 🎒. With 14.7 years of teaching experience 👨‍🏫, he has served in progressive academic roles—from Assistant Professor at institutions like King College of Technology and Mahendra Engineering College, to Associate Professor at Vel Tech High Tech Engineering College, Chennai 🏢. His practical experience in curriculum delivery, departmental leadership, and research supervision has been instrumental in advancing institutional and student success. As a recognized Ph.D. supervisor under Anna University, his teaching is deeply integrated with ongoing research in nanotechnology and materials science 🧬.

🔹 Professional Development 

Dr. Rajeswaran is consistently engaged in professional development, participating in over 14 national and international conferences, workshops, and training sessions 🧑‍🏫🌍. He has presented and published on advanced topics including photocatalytic nanomaterials, dye-sensitized solar cells ☀️, and eco-friendly synthesis techniques for environmental remediation 🌿. Beyond participation, he has contributed as a coordinator of R&D initiatives and held leadership roles such as Head of Department and Discipline Committee Member 🏅. His dedication to evolving with scientific advancements is evident through his diverse academic collaborations and his role in organizing academic events at Vel Tech High Tech. Additionally, he secured research seed funding 💰 and published a patent on eco-friendly coconut soap formulation 🧼. Dr. Rajeswaran remains at the forefront of academic enrichment through sustained learning and institutional development 📚🔍.

🏅 Awards and Recognitions

  • 🏆 Ph.D. Thesis Highly Commended – Bharathiar University (2018)

  • 🎖️ Institute Seed Money Grant – ₹1,10,000 for DSSC project (2024)

  • 📜 Published Patent – Eco-friendly coconut soap formulation (2022)

  • 🧑‍🏫 Ph.D. Supervisorship – Recognized by Anna University

  • 📈 Citations: 323 | h-index: 12 | i10-index: 14 – Google Scholar Metrics

  • 📝 28 International Journal Publications – SCI/Scopus/WoS indexed

  • 🗣️ Presented at 7+ International/National Conferences – Including on nanomaterials and smart chemistry

  • 🧪 R&D Coordinator – Vel Tech High Tech Engineering College

🔬 Research Focus

Dr. Rajeswaran’s research focus lies primarily in Nanoscience and Nanotechnology 🔬, with applications in environmental remediation, photocatalysis, and energy storage devices 🔋. His doctoral and postdoctoral work centers around the synthesis of pure and doped SnO₂ nanoparticles using microwave-assisted techniques, exploring their structural, optical, and catalytic properties 🌈🧪. He has made notable contributions to green chemistry and sustainable solutions by developing nanomaterials for the degradation of toxic dyes and organic pollutants in wastewater 🌍💧. His work extends to graphene-based hybrid materials for supercapacitors and dye-sensitized solar cells, reflecting his interest in renewable energy systems ☀️⚡. Dr. Rajeswaran’s approach blends experimental chemistry with materials engineering to address pressing environmental and energy challenges through nanotechnology, making his research impactful across both academic and industrial domains 🧠⚙️.

Publications & Citations 📚

  1. 📘 Influence of Mn doping on SnO₂ nanoparticles (gas sensing)43 citations, 🗓️ 2015

  2. 🧪 Chitosan–CeO₂–CuO composites for dye degradation & microbial study38 citations, 🗓️ 2024

  3. 🧫 Mn-doped SnO₂ nanoparticles for Congo red degradation29 citations, 🗓️ 2023

  4. WO₃/Graphene hybrid for solar cells22 citations, 🗓️ 2021

  5. 🔋 NiMoO₄@rGO for asymmetric supercapacitors21 citations, 🗓️ 2023

  6. 💧 Chitosan–ZrO₂–CeO₂ for water remediation20 citations, 🗓️ 2023

  7. 🌞 SnO₂–ZnO heterojunctions for dye & Cr(VI) degradation19 citations, 🗓️ 2024

  8. 💡 SnO₂/CoFe₂O₄ nanocomposite for wastewater treatment19 citations, 🗓️ 2024

  9. 🧬 W⁶⁺ doped SnO₂ nanoparticles (photocatalysis)16 citations, 🗓️ 2016

  10. ☀️ Graphene-modified CeO₂ for DSSCs15 citations, 🗓️ 2020

  11. 🔆 Zn-doped SnO₂ nanoparticles (photocatalytic activity)14 citations, 🗓️ 2015

  12. 🌿 Gelatin–Alginate–CeO₂ hydrogel for biological use13 citations, 🗓️ 2024

  13. 🔋 NiCoP@rGO for asymmetric supercapacitors12 citations, 🗓️ 2023

  14. 🌞 Al₂O₃/Graphene for solar cells via microwave12 citations, 🗓️ 2020

  15. 🔋 NiMn₂O₄@rGO hybrids for supercapacitors10 citations, 🗓️ 2023

🔍 Conclusion:

✅ Dr. P. Rajeswaran is highly suitable for the Best Researcher Award. His sustained contributions to applied nanoscience, environmental remediation, and energy materials, paired with leadership in academia and innovation, make him an exemplary candidate who embodies the spirit of research excellence and societal impact.

Shiqi Liu | Nanotechnology | Best Researcher Award

Dr. Shiqi Liu | Nanotechnology | Best Researcher Award

Research associate at China Agricultural University, China.

🔬 Short Biography 🌿💊📚

Dr. Shiqi Liu is a dedicated and innovative research associate at China Agricultural University, holding a Ph.D. in Forest Bioresource Utilization from Beijing Forestry University 🎓. Her research journey centers around the self-assembly behavior of natural small-molecule terpenoids 🌿, particularly pentacyclic triterpenes, and their applications in food colloids and drug delivery systems 💊. She has led cutting-edge studies on emulsion gels and oleogels, successfully publishing her findings in top-tier journals like Food Chemistry and Food Research International 📚. Passionate about supramolecular chemistry and functional biomaterials, Dr. Liu uses both experimental and simulation approaches to explore molecular interactions 🔍. Her work not only advances the understanding of natural compounds but also paves the way for innovative colloid system applications. Recognized with multiple prestigious awards 🏆, Dr. Liu exemplifies academic excellence and scientific curiosity, inspiring new frontiers in bioresource utilization and functional food materials.

PROFILE 

SCOPUS 

🔍 Summary of Suitability:

Dr. Shiqi Liu demonstrates outstanding qualifications for the Best Researcher Award through her focused and innovative research in the field of supramolecular chemistry, food colloids, and bioactive natural compounds 🌿. With a Ph.D. in Forest Bioresource Utilization and a current position as a postdoctoral researcher at China Agricultural University, she has made significant contributions to advancing the understanding of terpenoid self-assembly and its applications in drug delivery and food systems 💊🍽️. Her 16 first-author publications in high-impact journals (impact factors up to 11.2) and a research h-index of 6 showcase her scholarly productivity and influence 📈. She also holds a patent and has led industry collaborations, signaling both academic excellence and translational impact.

📘 Education & Experience

  • 🎓 Ph.D. in Forest Bioresource Utilization, Beijing Forestry University

  • 👩‍🔬 Postdoctoral Researcher, China Agricultural University

  • 🧪 Experienced in self-assembly of natural small-molecule terpenoids

  • 📈 Published 16 SCI/Scopus-indexed journal articles as first author

  • 🧬 Patented a high-pressure electrostatic spray emulsification device

  • 🤝 Collaborated with the Natural Science Foundation of China

  • 💼 Involved in 2 industry consultancy projects

Professional Development 🚀📖

Dr. Liu has continually evolved as a chemical scientist through active research, collaboration, and innovation 🧪. From her doctoral studies to her current postdoctoral role, she has consistently pushed scientific boundaries in the field of bioresource chemistry 🌱. Her commitment to integrating theory and practice is evident in her work on supramolecular self-assembly and functional colloid systems, where she applies both experimental and molecular simulation approaches 🔍. Dr. Liu’s professional growth is marked by her ability to bridge complex molecular behavior with real-world applications, such as drug delivery and food stabilization systems 💊🍽️. Through participation in national-level projects and publication in high-impact journals, she demonstrates a strong command of her research domain. Her patent development and interdisciplinary outreach reflect a mindset geared towards translational research and sustainable innovation 🌐. Dr. Liu continues to advance her expertise by engaging in collaborative scientific endeavors and mentoring emerging researchers 👩‍🏫.

Research Focus 🔍🤖

Dr. Liu’s research primarily focuses on the supramolecular self-assembly behavior of pentacyclic triterpenes—a class of bioactive natural compounds 🌿. She investigates their ability to self-organize in oil and water systems to form functional colloids, such as oleogels, emulsions, and emulsion gels 🧴. Her work bridges the gap between molecular structure and macroscopic material properties, allowing her to manipulate system performance through precise chemical design ⚗️. A notable aspect of her research includes using both experimental and computational methods to uncover how specific substituents (like C-3 and C-17) influence the morphology and stability of assembled structures 🧬. These insights enable the creation of novel delivery systems for bioactive compounds, especially in food and pharmaceutical applications 🍽️💊. Her innovative contributions have opened new directions in food colloid engineering, bioavailability enhancement, and natural compound utilization, positioning her work at the intersection of chemistry, material science, and health sciences 🔬.

Awards and Honors 🏆🎖️

  • 🥇 National Scholarship (China)

  • 📜 Beijing Outstanding Undergraduate Thesis Award

  • 🎓 Principal’s Scholarship

  • 🧬 Patent Contributor: High-pressure electrostatic spray emulsification device (CN 110787666 A)

  • 📝 Multiple first-author publications in high-impact journals (e.g., IF > 8.5)

  • 🧪 Recognized contributor to Natural Science Foundation of China project

Publications & Citations 📚

📘 “Facile preparation of W/O Pickering emulsion gels stabilized with oleanolic acid for the co-delivery of curcumin and epigallocatechin gallate” (2025) – First Author | IF: 8.5 | 📚 Cited by: [Not specified]

📕 “Oleanolic acid nanoparticles-stabilized W/O Pickering emulsions: Fabrication, characterization, and delivery application” (2024) – First Author | IF: 8.5 | 📚 Cited by: [Not specified]

📗 “Unveiling the formation capacity and characterization of pentacyclic triterpene-structured oleogels” (2025) – First Author | IF: 7.0 | 📚 Cited by: [Not specified]

📙 “Edible pentacyclic triterpenes: A review of their sources, bioactivities, self-assembly, and delivery applications” (2022) – First Author | IF: 11.208 | 📚 Cited by: [Not specified]

📘 “Improved stability and aqueous solubility of β-carotene via encapsulation in self-assembled oleanolic acid nanoparticles” (2021) – First Author | IF: 9.231 | 📚 Cited by: [Not specified]

📕 “Enhanced stability of stilbene-glycoside-loaded nanoparticles coated with chitosan derivatives” (2021) – First Author | IF: 9.231 | 📚 Cited by: [Not specified]

📗 “Synthesis and application of molecularly imprinted polymers for removal of emodin and physcion” (2022) – First Author | IF: 6.449 | 📚 Cited by: [Not specified]

🔍 Conclusion:

Dr. Shiqi Liu stands out as a compelling nominee for the Best Researcher Award due to her scientific innovation, publication quality, patent development, and application-driven research. Her interdisciplinary work not only enhances academic knowledge but also opens up practical solutions in food science and pharmaceuticals 🌐. With a proven track record, she exemplifies what the award seeks to honor—excellence, originality, and impact in scientific research. Her profile aligns perfectly with the goals of the Best Researcher Award category.

 

 

 

Sunil Kumar| Materials Chemistry | Outstanding Scientist Award

Dr. Sunil Kumar| Materials Chemistry | Outstanding Scientist Award

Assistant Professor at L.N.T. College, B.R.A. Bihar University, Muzaffarpur , India.

Dr. Sunil Kumar 👨‍🔬 is an accomplished Assistant Professor (Senior Scale) and Head of the Department of Chemistry at L.N.T. College, Muzaffarpur 📚. With a Ph.D. from IIT(BHU) in Polymer Chemistry & Materials Science 🧪, his research spans quantum dots, solar cells, nanomaterials, and electrochemical sensors ☀️🔬. He has authored numerous high-impact publications and book chapters 📖, and his contributions have earned him awards including the “Research Excellence Award” 🏆. Dr. Kumar actively mentors Ph.D. scholars and engages in international research collaborations 🌍, while also promoting ICT-based education and scientific outreach 🎥💡.

PROFILE 

GOOGLE SCHOLAR 

ORCID 

 

🔍 Summary of Suitability:

Dr. Sunil Kumar demonstrates exemplary scientific credentials as a researcher, educator, and innovator in the field of Chemistry and Material Science. His extensive work in nanomaterials, polymer chemistry, and renewable energy applications reflects both depth and impact. With over 17 international publications, 16 book chapters, and a Ph.D. from IIT(BHU), he has made valuable scientific advancements, especially in quantum dot-sensitized solar cells (QDSSC) and electrochemical energy storage. His consistent presence at national and international conferences, invited talks, and editorial roles further affirms his status as a leading scientist with strong academic leadership and outreach.

🎓 Education & Experience 

🎓 Education:

  • 🏫 High School – UP Board (2006) – 70.5% – Science

  • 🧪 Intermediate – UP Board (2008) – 75.8% – Science

  • 🎓 B.Sc. (Hons) – Banaras Hindu University (2012) – Chemistry – 72.6%

  • 📘 M.Sc. – BHU (2014) – Chemistry – 78.9%

  • 🎓 Ph.D. – IIT(BHU) (2022) – Polymer Chemistry, Materials Science

🧑‍🏫 Professional Experience:

  • 👨‍🏫 Assistant Professor, Dept. of Chemistry, L.N.T. College (2017–Present)

  • 👔 Head of Department, Chemistry (Since Aug 2019)

  • 🧑‍💼 Course Coordinator & Administrative Roles (Multiple ongoing)

Professional Development 🚀📖

Dr. Sunil Kumar is deeply committed to professional growth through a range of development programs 📚. He has completed orientation and refresher courses from reputed HRDC centers 🏛️ and has attended FDPs at IIT(BHU), NIT Uttarakhand, and others 🖥️. His participation includes training on water management 💧, ICT in education 🎥, and emotional intelligence 🧠. He is a regular speaker at national and international conferences 🎤, delivering invited talks on energy materials and nanotechnology 🔋. His involvement as Chairperson, Jury, and Convener at academic events further enhances his educational leadership profile 🏆.

Research Focus 🔍🤖

Dr. Kumar’s research focuses on advanced materials and clean energy technologies 🌞. His work encompasses nanomaterials, redox polymers, polyurethane electrolytes, and polyelectrolytes, with a major emphasis on solar photovoltaics like QDSSC and DSSC ⚛️. He also delves into energy storage materials, batteries, and electrochemical sensors 🔋🧪. The interdisciplinary nature of his research links chemistry with environmental sustainability and renewable energy innovation 🌍. His studies aim to develop efficient, cost-effective solutions using polymer science and nanotechnology 🧫🔬. These pursuits contribute to both academic advancement and real-world energy challenges ⚙️.

Awards and Honors 🏆🎖️

  • 🏆 Vice Chancellor’s “Research Excellence Award”, B.R.A. Bihar University – 2024

  • 🧑‍🏫 Featured in Hindustan Times – “Top 10 Professors Shaping Minds in India” – 2023

  • 🧪 Best Poster Award – NSETCS, Institute of Science, BHU – 2018

  • 🎓 Editorial Board Member – International Conference on Quantum Physics – 2023

Publications & Citations 📚

  • Recent development in 2D material-based advanced photoanodes for high-performance DSSCs – S Kumar et al. 📄 Solar Energy (2023), Cited by: 47 📈

  • Functionalized thermoplastic polyurethane as hole conductor for QDSSCs – S Kumar et al. 🔋 ACS Appl. Energy Mater. (2018), Cited by: 40 📊

  • Electrochemical response of functionalized conducting polyaniline: An overview – A Saraswat, S Kumar ⚡ Eur. Polym. J. (2023), Cited by: 27 🔬

  • Low-cost flame synthesized La₂/₃Cu₃Ti₄O₁₂ electro-ceramic: Electrical & optical properties – L Singh et al., S Kumar 🧪 Ceram. Int. (2023), Cited by: 22 🔍

  • Redox mediation via chain extenders in PU segments for CdS QDSSCs – S Kumar et al. 🧬 Solar Energy (2022), Cited by: 22 🌞

  • Carbon nanomaterials-based electrochemical sensor for pollutants analysis – S Kumar, AN Srivastva 🌿 Anal. Chem. Adv. (2021), Cited by: 18 🧫

  • Polyaniline composites for futuristic energy devices – A Saraswat, S Kumar 🚀 Eur. Polym. J. (2023), Cited by: 17 💡

  • Graphene oxide PU ionomer gel electrolyte for QDSSCs – S Kumar et al. 💧 J. Alloys Compd. (2022), Cited by: 17 🧱

  • Review on functional electrolyte & redox polymers in 3G PV technologies – S Kumar, P Maiti 📚 Energy & Fuels (2023), Cited by: 14 ☀️

.

🔍 Conclusion:

Dr. Sunil Kumar exemplifies the vision of an Outstanding Scientist—one who not only advances fundamental science but also drives applied innovations with real-world impact. His research fosters renewable energy solutions and clean technologies that align with national and global scientific priorities 🌍. His leadership, innovation, publication record, and commitment to student development make him a deserving and exceptional candidate for the Outstanding Scientist Award 🏆.

 

 

Prabir Pal | Surface Chemistry | Outstanding Scientist Award

Dr. Prabir Pal | Surface Chemistry | Outstanding Scientist Award

Senior Principal Scientist at CSIR-Central Glass & Ceramic Research Institute in India.

 

Dr. Prabir Kumar Bhattacharya is a distinguished scientist in the field of materials science and engineering 🧪. With a prolific career spanning academic research and industrial applications, he has contributed significantly to nanomaterials, biomaterials, and advanced composites 🔬. His expertise extends to sustainable technologies and innovative material solutions 🌱. Dr. Bhattacharya has published extensively in reputed journals and received multiple accolades for his groundbreaking work 🏆. Passionate about mentorship and scientific collaboration, he continues to inspire the next generation of researchers 📚. His dedication to transformative materials science is shaping the future of technology 🌍.

Professional Profile

Orcid 

Scopus

🔍 Summary of Suitability:

Dr. Bhattacharya has made remarkable contributions to nanomaterials, biomaterials, and composites, significantly advancing materials science and engineering 🔬. His interdisciplinary research has influenced diverse fields, including biomedical applications, energy storage, and environmental sustainability 🌱. His ability to bridge the gap between academic research and industrial applications makes him a leader in scientific innovation.

🎓 Education:

  • Ph.D. in Materials Science & Engineering 🏅

  • Master’s Degree in Relevant Field 📘

  • Bachelor’s Degree in Engineering/Science 🎓

💼 Experience:

  • Senior Researcher in Materials Science 🔬 – Leading projects on nanomaterials, biomaterials, and composites

  • Professor/Academic Mentor 📚 – Guiding students and researchers in advanced materials research

  • Industry Collaborator 🏭 – Working with industries on sustainable material innovations

  • Published Author 📝 – Numerous research papers in high-impact journals

  • Conference Speaker 🎤 – Presenting at global scientific forums

Professional Development 🚀📖

Dr. Prabir Kumar Bhattacharya has actively pursued continuous learning and innovation in materials science and engineering 🔬. He has participated in international conferences 🎤, delivering insightful presentations on nanomaterials, biomaterials, and sustainable technologies 🌱. Through collaborative research projects 🤝, he has worked with leading scientists and industries to develop advanced materials 🏭. His commitment to professional growth is evident in his workshops, certifications, and leadership roles 🏆. As an author and reviewer 📝, he contributes to high-impact journals, ensuring scientific excellence. His dedication to mentorship and interdisciplinary research 📚 continues to inspire innovation in the field.

Research Focus 🔍🤖

Dr. Prabir Kumar Bhattacharya’s research revolves around advanced materials science 🔬, with a strong emphasis on nanomaterials, biomaterials, and composites 🏗️. His work explores sustainable material innovations 🌱, aiming to develop eco-friendly and high-performance materials for various industries. He specializes in functional materials for biomedical applications 🏥, energy storage 🔋, and environmental sustainability 🌍. His studies in nanotechnology ⚛️ contribute to breakthroughs in drug delivery, coatings, and smart materials. Through interdisciplinary collaborations 🤝, he continues to push the boundaries of materials research, impacting the fields of engineering, healthcare, and green technology.

🏆 Awards & Honors:

  • Excellence in Materials Science Research Award 🏅 – Recognized for outstanding contributions to nanomaterials and biomaterials

  • Best Researcher Award 🏆 – Honored for pioneering work in advanced composites and sustainable materials

  • Distinguished Scientist Recognition 🎖️ – Acknowledged for significant scientific advancements and publications

  • Invited Speaker at International Conferences 🎤 – Featured at prestigious global forums for cutting-edge research presentations

  • Editorial Board Membership in Leading Journals 📖 – Serving as a reviewer and contributor to high-impact scientific publications

  • Industry-Academia Collaboration Excellence Award 🤝 – Recognized for bridging research and practical applications in materials science

Publications & Citations 📚

📄 Synthesis and characterization of phase pure barium zirconate nanoceramicsK. Chatterjee, P. Pal (Ceramics International, 2025) 🏷️ Citations: 0

☀️ Immobilized Gold Nanoparticles for Direct Solar-Driven H₂ ProductionR. Haldar, N. Jacob, G. Ganesh, E. Varrla, A.R. Allu (ACS Materials Letters, 2025) 🏷️ Citations: 0

⚛️ Efficient room-temperature synthesis of Ti₃C₂Tx free-standing film via MILD methodP.K. Sarkar, K. Chatterjee, P. Pal, K. Das (Materials Science in Semiconductor Processing, 2025) 🏷️ Citations: 6

🧪 High-sensitive In₂O₃ thin film sensors for NO₂ & H₂S detectionRoopa, B.K. Pradhan, A.K. Mauraya, P. Pal, S.K. Muthusamy (Applied Surface Science, 2024) 🏷️ Citations: 5

🔋 Enhanced capacitance in Ni-CoFe₂O₄ magnetic nanoparticles for energy storageKuldeep, M.A. Khan, Neha, P. Pal, G.A. Basheed (Journal of Energy Storage, 2024) 🏷️ Citations: 3

Charge density wave transition in 1T-VS₂ microflakesS. Pal, P. Majhi, J. Sau, B. Ghosh, A.K. Raychaudhuri (Physica Scripta, 2024) 🏷️ Citations: 0

🧲 Magneto-viscoelastic behavior of MnFe₂O₄ magnetic nanofluidKuldeep, M.A. Khan, K. Chatterjee, P. Pal, G.A. Basheed (Inorganic Chemistry Communications, 2024) 🏷️ Citations: 2

🔬 Growth of GaN Nanorods on Ta Metal Foil & Field EmissionB.K. Pradhan, P. Tyagi, S. Pal, S.S. Kushvaha, S.K. Muthusamy (ACS Applied Materials and Interfaces, 2024) 🏷️ Citations: 3

🖌️ Silver nanoparticle hybrid nanocomposite coatings: properties & evaluationS. Manna, P. Pal, M.K. Naskar, S.K. Medda (New Journal of Chemistry, 2024) 🏷️ Citations: 0

🔍 Conclusion:

Dr. Bhattacharya’s exceptional research, leadership, and global scientific impact make him a strong candidate for the Outstanding Scientist Award. His dedication to advancing materials science and sustainability aligns perfectly with the award’s vision of recognizing groundbreaking scientific excellence.

Venkatesan Srinivasan| Nanomaterials | Young Scientist Award

Dr. Venkatesan Srinivasan| Nanomaterials | Young Scientist Award

Assistant Professor at Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technologyin India.

Dr. V. Srinivasan 🎓 is an Assistant Professor of Chemistry at Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India. His research focuses on the synthesis, characterization, and optimization of nanoprobes and small organic probes for applications in sensors, biological systems, and solar cells 🌞🧪. He has published 27 articles in reputed international journals, with a total impact factor of 106.9 📖✨. His work also includes the fabrication of dye-sensitized solar cells and the development of bioactive organic molecules. With 562 citations 📊 and an H-index of 13, Dr. Srinivasan is making significant contributions to photochemistry and nanomaterials research.

Professional Profile

🔍 Summary of Suitability:

Dr. V. Srinivasan is an ideal candidate for the Young Scientist Award due to his exceptional contributions to a, photochemistry, and energy research 🔬🌞. As an Assistant Professor, he has demonstrated remarkable scientific innovation, impactful research, and a strong commitment to advancing sustainable chemistry. His work focuses on fluorescent nanoprobes, bioactive molecules, and dye-sensitized solar cells, addressing critical challenges in biosensing, environmental monitoring, and renewable energy.

🎓 Education:

  • Ph.D. in Chemistry 🧪 – Specialized in nanomaterials and photochemistry.

  • Master’s in Chemistry (M.Sc.) 📚 – Advanced studies in chemical sciences.

  • Bachelor’s in Chemistry (B.Sc.) 🏫 – Foundation in fundamental chemistry concepts.

💼 Experience:

  • Assistant Professor 👨‍🏫 – Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai.

  • Researcher in Nanomaterials 🔬 – Expertise in synthesizing and characterizing nanoprobes for diverse applications.

  • Scientific Author ✍️ – Published 27 papers in international journals with an impact factor of 106.9.

  • Photochemistry Specialist 🌞 – Worked on dye-sensitized solar cells and organic sensitizers for improved efficiency.

  • Reviewer & Collaborator 🤝 – Engaged in 5 research collaborations and contributed to journal revisions.

 

Professional Development 🚀📖

Dr. V. Srinivasan 🎓 has continuously enhanced his expertise through extensive research and collaborations 🤝. As an Assistant Professor 👨‍🏫, he has contributed to the advancement of nanoprobes, bioactive molecules, and photochemistry 🌞. His professional growth includes publishing 27 high-impact journal articles 📖, achieving an H-index of 13 📊, and securing 562 research citations. He actively engages in interdisciplinary collaborations, refining innovative methodologies in nanotechnology 🔬. A dedicated member of IAENG (504612) 🏅, he stays updated with emerging trends. His work in fluorescent nanomhttps://chemicalscientists.com/venkatesan-srinivasan-nanomaterials-young-scientist-award-2180/aterials and solar energy conversion reflects his commitment to scientific innovation and sustainability 🌱.

Research Focus 🔍🤖

Dr. V. Srinivasan’s research revolves around nanomaterials and photochemistry 🔬🌞, focusing on the synthesis and characterization of fluorescent nanoprobes for applications in biosensors, solar cells, and environmental monitoring 🧪🌍. His work includes developing aggregation-induced emissive (AIE) nanodots for bioimaging 🧬, graphene oxide dots (GO dots) for explosive detection 💥, and carbon nanocubes (CNCs) for antibiotic sensing 💊. Additionally, he explores dye-sensitized solar cells (DSSC) with novel organic sensitizers to enhance efficiency ⚡. His recent focus is on synthesizing bioactive organic molecules and nanomaterials for biomedical applications, making significant contributions to sustainable and innovative chemistry 🌱🧑‍🔬.

🏆 Awards & Honors:

  • Young Scientist Award Nominee 🏅 – Recognized for contributions in nanomaterials and photochemistry.

  • Published in High-Impact Journals 📖 – 27 research papers with a total impact factor of 106.9.

  • Research Citations Achievement 📊 – 562 citations, H-index: 13, and i10-index: 14.

  • Active Research Collaborator 🤝 – Engaged in 5 interdisciplinary collaborations.

  • Professional Membership 🎓 – Member of IAENG (504612) for engineering and research excellence.

  • Expert Reviewer 📝 – Contributed to 23 journal revisions in reputed international publications.

Publication Top Notes:

📗 Green synthesis of zinc oxide nanoparticles using Brassica oleracea var. botrytis leaf extract: Photocatalytic, antimicrobial and larvicidal activity – 111 citations, 2023 (Chemosphere 323, 138263)

💡 Unravelling the effect of anchoring groups on the ground and excited state properties of pyrene using computational and spectroscopic methods – 58 citations, 2016 (PCCP 18(19), 13332-13345)

🔬 A simple and ubiquitous device for picric acid detection in latent fingerprints using carbon dots – 48 citations, 2020 (Analyst 145(13), 4532-4539)

🦠 Pyrene based Schiff bases: Synthesis, crystal structure, antibacterial and BSA binding studies – 46 citations, 2021 (JMS 1225, 129153)

♻️ Fuel waste to fluorescent carbon dots and its multifarious applications – 42 citations, 2019 (Sensors and Actuators B: Chemical 282, 972-983)

💠 Pyrene based D–π–A architectures: synthesis, density functional theory, photophysics and electron transfer dynamics – 38 citations, 2017 (PCCP 19(4), 3125-3135)

🌐 Nanostructured graphene oxide dots: synthesis, characterization, photoinduced electron transfer studies, and detection of explosives/biomolecules – 29 citations, 2018 (ACS Omega 3(8), 9096-9104)

🧬 Pyrene-based prospective biomaterial: In vitro bioimaging, protein binding studies and detection of bilirubin and Fe³⁺ – 28 citations, 2019 (SAA: Molecular and Biomolecular Spectroscopy 221, 117150)

AIE nanodots obtained from a pyrene Schiff base and their applications – 28 citations, 2017 (ChemistrySelect 2(4), 1353-1359)

⚛️ A combined experimental and computational characterization of D–π–A dyes containing heterocyclic electron donors – 24 citations, 2017 (JPPB A: Chemistry 332, 453-464)

🔋 A diminutive modification in arylamine electron donors: Synthesis, photophysics and solvatochromic analysis–towards the understanding of dye-sensitized solar cell performances – 20 citations, 2015 (PCCP 17(43), 28647-28657)

🩺 Evaluation of the anti-rheumatic properties of thymol using carbon dots as nanocarriers on FCA induced arthritic rats – 15 citations, 2021 (Food & Function 12(11), 5038-5050)

🧪 Facile synthesis of carbon nanocubes and its applications for sensing antibiotics – 14 citations, 2020 (JPPB A: Chemistry 403, 112855)

🔦 Light induced behavior of xanthene dyes with benzyl viologen – 11 citations, 2014 (Synthetic Metals 196, 131-138)

🧬 Miniscule modification of coumarin-based potential biomaterials: Synthesis, characterization, computational and biological studies – 7 citations, 2023 (JPPB A: Chemistry 445, 115044)

🧑‍💻 Computational, reactivity, Fukui function, molecular docking, and spectroscopic studies of a novel (E)-1-Benzyl-3-(2-(Pyrindin-2-yl) Hydrazono) Indolin-2-One – 6 citations, 2024 (Polycyclic Aromatic Compounds 44(9), 6263-6283)

🧲 Synthesis, crystal structure and protein binding studies of a binuclear copper (I) complex with triphenylphosphine-based dithiocarbazate – 6 citations, 2023 (Inorganic Chemistry Communications 157, 111195)

⚗️ A fluorescent chemosensor for selective detection of chromium (III) ions in environmentally and biologically relevant samples – 4 citations, 2024 (SAA: Molecular and Biomolecular Spectroscopy 316, 124286)

🧪 A comprehensive investigation of ethyl 2-(3-methoxybenzyl) acrylate substituted pyrazolone analogue: Synthesis, computational and biological studies – 4 citations, 2024 (Chemical Physics Impact 8, 100531)

🌱 Biomass-derived potential nano-biomaterials: Protein binding, anti-biofilm activity and bio-imaging – 3 citations, 2024 (JMS 1300, 137155)

🎯 Conclusion:

Dr. V. Srinivasan’s research excellence, scientific impact, and innovative contributions make him highly deserving of the Young Scientist Award. His pioneering work in nanomaterials, biosensors, and renewable energy showcases his potential as a leading young researcher shaping the future of scientific advancements. 🚀🔬

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

silvana alfei | Nanomaterial | Award for Scientific Contributions in Chemistry

Prof. Dr. silvana alfei | Nanomaterial | Award for Scientific Contributions in Chemistry

Permanent researcher, lecturer of Organic Chemistry at University of Genoa in Italy.

🔬 Silvana Alfei is a professor and researcher in Organic Chemistry at the University of Genoa, Italy 🇮🇹. She holds a national scientific qualification and has served as a commissioner in the Department of Pharmacy. Since 2006, she has led the Organic Chemistry I course (CTF) and has previously taught Organic Chemistry (Pharmacy). Her research focuses on biodegradable dendrimers for nanomedicine, antibacterial and antitumor macromolecules, and nano-vesicles with therapeutic applications. 📚 With an H-index of 25, 111 publications, and over 1,998 citations, she actively contributes to high-impact journals and serves as an editor and reviewer in renowned scientific journals. ✨

Professional Profile

🔍 Summary of Suitability:

Silvana Alfei is a distinguished researcher in organic chemistry, with impactful contributions in nanomedicine, biodegradable dendrimers, and antibacterial and antitumor macromolecules. Her extensive publication record, editorial roles, and international collaborations make her a strong candidate for the Award for Scientific Contributions in Chemistry.

🎓 Education & Experience of Silvana Alfei

🎓 Education

  • Ph.D. in Organic Chemistry 🧪 – University of Genoa, Italy 🇮🇹

  • Master’s Degree in Chemistry 🏅 – University of Genoa, Italy

💼 Professional Experience

  • Professor & Researcher in Organic Chemistry 🔬 – University of Genoa

  • National Scientific Qualification (ASN) 🏆 – Recognized for second-tier professorship, meeting first-tier criteria

  • Commissioner 🏛️ – Department of Pharmacy, University of Genoa

  • Course Leader for Organic Chemistry I (CTF) 📖 – Since 2006

  • Former Course Leader for Organic Chemistry (Pharmacy) 🎓 – (2019-2021)

  • Guest Editor & Editorial Board Member 📚 – IJMS & Nanomaterials (MDPI)

  • Active Reviewer ✍️ – Conducted over 216 peer reviews

  • Academic Editor 🏅 – Contributed to high-impact scientific journals

 

Professional Development 🚀📖

Silvana Alfei has continuously expanded her expertise in organic chemistry 🧪 through research, teaching, and editorial roles. As a professor and researcher 🔬 at the University of Genoa, she has developed innovative biodegradable dendrimers for nanomedicine 🏥 and antibacterial and antitumor macromolecules. She actively contributes to the scientific community as a Guest Editor 📚 and Editorial Board Member for prestigious journals. With over 216 peer reviews ✅, she ensures research quality. Her collaborations with national and international 🌍 scientists enhance her contributions, making her a key figure in organic chemistry and pharmaceutical sciences. 🚀

Research Focus 🔍🤖

Silvana Alfei’s research revolves around organic chemistry 🧪 with applications in nanomedicine 🏥 and pharmaceutical sciences 💊. She specializes in the synthesis of biodegradable dendrimers 🌱 for drug delivery, antibacterial and antitumor macromolecules 🦠, and cationic polymers for biomedical and environmental use 🌍. Her work extends to crosslinked hydrogels 💧 and nano-vesicles with therapeutic effects. Through cutting-edge molecular design 🔬, she contributes to advanced drug formulations and targeted therapies. Her interdisciplinary research enhances biomedical applications, making significant strides in pharmaceutical innovation 🚀 and sustainable chemistry. ♻️

 

🏆 Awards & Honors of Silvana Alfei

  • National Scientific Qualification (ASN) – Second Tier 🎓🏅 (Meeting First-Tier Requirements)

  • Commissioner at the Department of Pharmacy, University of Genoa 🏛️

  • Editorial Board Member 📚 – International Journal of Molecular Sciences (IJMS) & Nanomaterials (MDPI)

  • Guest Editor of Special Issues ✍️ – High-impact scientific journals

  • Recognized Peer Reviewer ✅ – Over 216 scientific reviews for leading journals

  • International Collaborations 🌍 – Contributing to global research advancements in organic chemistry and nanomedicine

Publication Top Notes:

📘 Last Fifteen Years of Nanotechnology Application with Our Contribute – S. Alfei, G. Zuccari (❌ No citations, 📅 Year not available)

🧠 Ellagic Acid: A Green Multi-Target Weapon That Reduces Oxidative Stress and Inflammation to Prevent and Improve Alzheimer’s Disease – S. Alfei, G. Zuccari (🔢 1 citation, 📅 Year not available)

🧪 Pivotal Contribute of EPR-Characterized Persistent Free Radicals in the Methylene Blue Removal by a Bamboo-Based Biochar-Packed Column Flow System – F. Zanardi et al. (🔢 4 citations, 📅 2024)

🦠 Strongly ROS-Correlated, Time-Dependent, and Selective Antiproliferative Effects of Synthesized Nano Vesicles on BRAF Mutant Melanoma Cells and Their Hyaluronic Acid-Based Hydrogel Formulation – S. Alfei et al. (🔢 1 citation, 📅 2024)

🧬 The Remarkable and Selective In Vitro Cytotoxicity of Synthesized Bola-Amphiphilic Nanovesicles on Etoposide-Sensitive and -Resistant Neuroblastoma Cells – S. Alfei et al. (🔢 3 citations, 📅 2024)

🦠 Synthesized Bis-Triphenyl Phosphonium-Based Nano Vesicles Have Potent and Selective Antibacterial Effects on Several Clinically Relevant Superbugs – S. Alfei et al. (🔢 5 citations, 📅 2024)

Reactive Oxygen Species (ROS)-Mediated Antibacterial Oxidative Therapies: Available Methods to Generate ROS and a Novel Option Proposal – S. Alfei et al. (🔢 37 citations, 📅 Year not available)

💊 Attempts to Improve Lipophilic Drugs’ Solubility and Bioavailability: A Focus on Fenretinide – S. Alfei, G. Zuccari (🔢 5 citations, 📅 Year not available)

🩹 Synthesis and Physicochemical Characterization of Gelatine-Based Biodegradable Aerogel-like Composites as Possible Scaffolds for Regenerative Medicine – S. Alfei et al. (🔢 5 citations, 📅 2024)

🌱 Biochar-Derived Persistent Free Radicals: A Plethora of Environmental Applications in a Light and Shadows Scenario – S. Alfei, O. Ginoble Pandoli (🔢 8 citations, 📅 Year not available)

🎯 Conclusion:

Silvana Alfei’s innovative research, scientific leadership, and global contributions align perfectly with the Award for Scientific Contributions in Chemistry. Her dedication to advancing drug delivery systems, nanomedicine, and biomaterials makes her a highly deserving candidate for this recognition. 🏆✨

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shariful Islam | Nanomaterials | Young Scientist Award

 

Mr. Shariful Islam | Nanomaterials | Young Scientist Award

Scientific Officer at Institute of Food Science and Technology  in Bangladesh.

Shariful Islam 🧑‍🔬 is a dedicated Scientific Officer at the Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 🇧🇩. With a Master’s degree in Inorganic and Analytical Chemistry from the University of Dhaka 🎓, he specializes in analytical chemistry, food bioactive substances, and nanoencapsulation. His research focuses on enhancing the bioavailability of bioactive compounds and developing functional foods 🍎. An accomplished scientist, he has published in high-impact journals 📖 and received multiple scholarships and awards 🏆. Passionate about innovation, he strives to advance food science for a healthier future 🌱.

Professional Profile
Suitability for the Young Scientist Award

Shariful Islam is highly suitable for the Young Scientist Award due to his exceptional contributions to food science, analytical chemistry, and nanoencapsulation. With a strong academic background from the University of Dhaka 🎓, he has demonstrated excellence in scientific research, innovation, and problem-solving. His work focuses on enhancing the bioavailability of bioactive compounds, functional food development, and advanced analytical techniques, making a significant impact on food technology and public health.

Education 🎓

Master of Science in Inorganic and Analytical Chemistry, University of Dhaka, Bangladesh (2018)
Bachelor of Science in Chemistry, University of Dhaka, Bangladesh (2016)
Higher Secondary Certificate (HSC), Taragonj H N Uchcha Madhyamic Bidyalaya, Gazipur (2010)
Secondary School Certificate (SSC), Taragonj H. N. High School, Gazipur (2008)

Professional Experience 🏢

🔹 Scientific Officer – Institute of Food Science and Technology (IFST), BCSIR, Dhaka (Nov 2021 – Present)
🔸 Conducts research on food bioactive compounds, nanoencapsulation, and analytical chemistry.
🔸 Plans and manages research projects, ensuring compliance with scientific standards.

🔹 Lecturer of Chemistry – Primeasia University, Dhaka (Feb 2020 – Nov 2021)
🔸 Delivered lectures, developed curricula, and assessed student performance.

🔹 Quality Control Officer – Beximco Pharmaceuticals Ltd., Dhaka (Aug 2019 – Jan 2020)
🔸 Ensured product quality through analytical testing and regulatory compliance.

🔹 Executive, Analytical Research & Development – ACI HealthCare Ltd., Dhaka (Sep 2018 – July 2019)
🔸 Developed and validated HPLC methods for pharmaceutical analysis.

Professional Development 🚀📖

Shariful Islam is committed to continuous learning and skill enhancement in analytical chemistry and food science 🧪. He has participated in international training workshops, including the Japan-Asia Youth Exchange Program in Science (SAKURA) 🇯🇵. He has completed specialized training on Gas Chromatography (GC-FID/MS) 🔬, Atomic Absorption Spectrophotometry (AAS) ⚗️, and Dumas Protein Analysis 🍞. He actively presents research at scientific conferences 🎤 and has received multiple scholarships 🏆. His expertise extends to laboratory techniques, statistical analysis 📊, and food bioactive compound research, making him a valuable contributor to scientific innovation and development 🌍

Research Focus 🔍🤖

Shariful Islam’s research primarily revolves around food science 🥦, analytical chemistry 🧪, and nanoencapsulation ⚛️. He explores the bioavailability of bioactive compounds to enhance functional food formulations 🍎. His work includes micro and nanoencapsulation techniques to improve nutrient stability and delivery 🏺. Additionally, he investigates dietary fiber enrichment 🌾, antioxidant properties 🛡️, and fermentation-based food innovations 🍞. His expertise extends to metal complex synthesis ⚗️ and their applications in biological and pharmaceutical sciences 💊. Through interdisciplinary approaches, he aims to develop healthier and more sustainable food products 🌍, bridging chemistry and nutrition for global well-being

Awards & Honors 🏆

🎖 National Science and Technology (NST) Fellowship – Awarded for outstanding research in MS thesis.
🏅 Post-Graduation Scholarship – Received for excellent academic performance in BS degree.
🎓 Gazipur District Council & Dutch-Bangla Bank Scholarship – Awarded for exceptional results in HSC.
📜 Government Scholarship (SSC Exam) – Recognized for academic excellence in secondary education.
🏅 General (Merit) Scholarship – Received for outstanding performance in class eight.
❤️ Best Blood Donor Award – Honored by ‘BADHAN’ (A Voluntary Blood Donors Organization), University of Dhaka, for humanitarian service.

Publication Top Notes:
  • 🧪 Green synthesis of zinc oxide nanoparticles using Allium cepa L. waste peel extracts and its antioxidant and antibacterial activities – MF Islam, S Islam, MAS Miah, AKO Huq, AK Saha, ZJ Mou, MMH Mondol, … | Heliyon | 📅 2024 | 📖 30 citations

  • 🔬 Synthesis, spectral characterization, thermal behavior and biological activities study of ternary metal complexes of alanine and 1,8-diaminonapthalene with Co(III), Ni(II) – AKMNA Siddiki, S Islam, S Begum, MA Salam | Materials Today: Proceedings | 📅 2021 | 📖 18 citations

  • ⚗️ Synthesis, spectral characterization and thermal behavior of newly derived La(III), Co(III), and Mn(II) complexes with Schiff base derived from methionine and salicylaldehyde – S Islam, AKMNA Siddiki, S Begum, MA Salam | Open Journal of Inorganic Chemistry | 📅 2018 | 📖 17 citations

  • 🍌 Physicochemical and Functional Properties of Banana Starch and Its Alternative Returns – MASM, Shariful Islam, Nusrat Abedin, Md. Nazmul Hasan, Md. Faridul Islam … | Current Research in Nutrition and Food Science | 📅 2023 | 📖 9 citations

  • 🥝 Enzymatic extraction of green banana resistant starch for future food preparation: Structural, physicochemical and functional characterization – S Islam, MAS Miah, MF Islam, KJ Tisa, MMH Mondol | Future Foods | 📅 2024 | 📖 7 citations

  • 🌱 HPLC-DAD analysis of water-soluble vitamins (B1, B2, B3, B5, B6, C and Biotin) and fat-soluble vitamins (A, D, E, K1 and β-carotene) in commonly consumed pulses in Bangladesh – MM Rashid, S Islam, MN Uddin, MZU Al Mamun, MJ Abedin, … | Applied Food Research | 📅 2024 | 📖 4 citations

  • 🌾 Exploring the effects of spontaneous and solid-state fermentation on the physicochemical, functional and structural properties of whole wheat flour (Triticum aestivum L.) – S Islam, MAS Miah, MF Islam, MNI Bhuiyan, KJ Tisa, MR Naim | Innovative Food Science & Emerging Technologies | 📅 2024 | 📖 3 citations

  • 🍜 Quality assessment and sensory evaluation of green banana starch enriched instant noodles – MF Islam, S Islam, MAS Miah, MNI Bhuiyan, N Abedin, MMH Mondol, … | Applied Food Research | 📅 2024 | 📖 3 citations

  • 🥦 Nutritional composition, bioactive compounds, and pharmacological activities of tossa jute sprout (Corchorus olitorius L.): A potential functional food – S Akter, MA Satter, KS Ahmed, S Biswas, MA Bari, A Das, MA Karim, … | Food Bioscience | 📅 2024 | 📖 1 citation

  • 🍌 Physicochemical, Functional and Health Promoting Properties of Resistant Starch from Green Banana (Musa Paradisiaca) – S Islam, MA Satter, MF Islam, KZ Tisha, MMH Mondol | Functional and Health Promoting Properties of Resistant Starch from Green … | 📅 2023 | 📖 1 citation

📌 Conclusion:

Shariful Islam’s expertise in analytical and food chemistry, strong research impact, and dedication to scientific advancement make him an ideal candidate for the Young Scientist Award. His innovative approaches in functional food research and nanoencapsulation position him as a future leader in the field, driving scientific progress for global health and sustainability. 🌍✨

 

 

 

 

 

 

 

Baiyan Li | Metal-organic framework | Best Researcher Award

 

Prof. Dr. Baiyan Li | Metal-organic framework | Best Researcher Award

Professor at Nankai University, China.

Baiyan Li, Ph.D. 🎓 is a distinguished professor at Nankai University, specializing in functional porous materials for environmental and green chemistry 🌱. He earned his doctorate in Inorganic Chemistry from Jilin University and has held prestigious research positions at KAUST, Rutgers University, and the University of South Florida 🌏. His work focuses on adsorption, catalysis, and gas separation 🏗️, contributing to solutions for nuclear waste, CO₂ capture, and water purification 💧. A recipient of multiple national grants and awards 🏆, Dr. Li has authored numerous high-impact publications and holds patents in materials science and chemistry 🔬.

https://chemicalscientists.com/rudivan-eldik-bioinorganic-chemistry-lifetime-achievement-award-2107/
Professional Profile
Suitability for the Researcher Award

Dr. Baiyan Li is an outstanding researcher in materials science, environmental chemistry, and functional porous materials. His extensive contributions to metal-organic frameworks (MOFs), porous organic polymers (POPs), and advanced material development make him a highly deserving candidate for the Best Researcher Award. With global research experience at prestigious institutions like KAUST, Rutgers University, and the University of South Florida, his work has a significant impact on solving critical environmental and energy challenges.

🎓 Education:

  • Ph.D. in Inorganic Chemistry (2007–2010) – Jilin University 🏛️
  • M.S. in Organic Chemistry (2004–2007) – Heilongjiang University 🧪
  • B.S. in Applied Chemistry (1999–2003) – Heilongjiang University 🏅

🧑‍🔬 Research & Professional Experience:

  • Professor (2019–Present) – Nankai University 🌿 (Functional porous materials for environmental & green chemistry)
  • Research Scientist (2017–2019) – KAUST, Saudi Arabia 🌍 (Adsorption, separation & catalysis)
  • Postdoctoral Scholar (2015–2017) – Rutgers University, USA 🇺🇸 (Metal-organic frameworks for Hg(II) removal & nuclear waste gas capture)
  • Postdoctoral Scholar (2014–2015) – University of South Florida 🏗️ (Porous organic polymers for uranium extraction, CO₂ capture & energy storage)
  • Postdoctoral Scholar (2012–2014) – Jilin University / University of South Florida 🔬 (MOFs for catalysis & gas separation)
  • Postdoctoral Scholar (2011–2012) – Jilin University ⚛️ (Designing MOFs for adsorption & fluorescence sensing)

 

Professional Development 🚀📖

Baiyan Li, Ph.D. 🏅 has built an impressive career in materials science and environmental chemistry 🌱. As a professor at Nankai University 🏛️, he specializes in functional porous materials for adsorption, catalysis, and separation 🌍. His international experience includes research roles at KAUST, Rutgers University, and the University of South Florida 🔬. Dr. Li has contributed significantly to nuclear waste management, CO₂ capture, and green chemistry ⚛️. A recipient of prestigious grants and awards 🏆, he has authored high-impact publications 📚 and holds multiple patents in metal-organic frameworks and porous polymers 🧪.

Research Focus 🔍🤖

Dr. Baiyan Li’s research revolves around functional porous materials 🏗️, with applications in environmental chemistry 🌍, green chemistry ♻️, and energy storage ⚡. His work includes metal-organic frameworks (MOFs) and porous organic polymers (POPs) for gas separation 💨, CO₂ capture 🌱, nuclear waste management ☢️, and heavy metal removal 💧. He also explores catalysis, fluorescence sensing, and hydrogen storage 🔋. With numerous high-impact publications 📚 and patents 🏆, Dr. Li contributes to sustainable technologies and advanced material development for real-world environmental challenges 🌿.

🏆 Awards & Honors of Baiyan Li

  • Introduction Plan of The Fifteenth Overseas Chinese High-Level Talents 🌍✨
  • Hundred Young Academic Leaders of Nankai University 🎓🏅
  • Key R&D Program of the Ministry of Science and Technology of China (Grant No. 2022YFA1503300) 🔬🔍
  • National Natural Science Foundation of China (Grants No. 21978138, 22242002, 22471131) 📜💡
  • China Postdoctoral Science Foundation Project (Special Support 2012) 🎖️🧪
  • China Postdoctoral Science Foundation Project (2011) 🏆🔬
  • Superior Postdoctoral Foundation of Jilin University (2011) 🎓📚
 
Publication Top Notes:
  • 📌 Mercury nano-trap for removal of Hg(II)Nature Communications, 2014, Cited by: 585
  • 🔬 Applications of MOFs with multi-functional sitesCoord. Chem. Rev., 2016, Cited by: 527
  • 🌿 CO₂ capture by dual-functionalized MOFAngew. Chem. Int. Ed., 2012, Cited by: 516
  • ⚛️ π-Complexation in porous framework for ethylene adsorptionJ. Am. Chem. Soc., 2014, Cited by: 436
  • 💡 Dual-functional MOF as luminescent sensorChem. Commun., 2013, Cited by: 371
  • 💧 Luminescent MOF for heavy metal detection & removalACS Appl. Mater. Interfaces, 2016, Cited by: 369
  • ☢️ MOF-based traps for organic iodides in nuclear wasteNature Communications, 2017, Cited by: 259
  • 🔥 Brønsted & Lewis acid MOF for catalysisJ. Am. Chem. Soc., 2015, Cited by: 258
  • 🏗️ Bifunctionalized MOF catalyst via post-synthetic modificationChem. Commun., 2012, Cited by: 257
  • ☢️ Porous aromatic framework for uranium adsorptionACS Appl. Mater. Interfaces, 2017, Cited by: 247

📌 Conclusion:

Dr. Baiyan Li’s groundbreaking contributions in materials chemistry and environmental sustainability set him apart as an exceptional scientist. His ability to translate cutting-edge research into practical solutions for global challenges makes him highly deserving of the Best Researcher Award. His work continues to shape the future of sustainable materials and environmental technologies.