Waldo Ullah | Biochemical Pharmacology | Best Researcher Award

Prof. Dr. Waldo Ullah | Biochemical Pharmacology | Best Researcher Award

Assistant professor at Pontifical Catholic University of Valparaíso, Chile.

🔬 Short Biography 🌿💊📚

Dr. Waldo Acevedo Castillo 🧑‍🔬 is an Associate Professor at the Institute of Chemistry, Faculty of Science, Pontificia Universidad Católica de Valparaíso 🇨🇱. With a Ph.D. and M.Sc. in Engineering Sciences from Pontificia Universidad Católica de Chile 🎓, Dr. Acevedo has established himself as a pioneer in food chemistry and structural bioinformatics 🧪. His research focuses on the molecular characterization of organoleptic food additives 🍬 and rational drug design 💊. He has published extensively in high-impact journals and contributed to multiple interdisciplinary projects in biochemistry and pharmacology. Passionate about teaching and mentoring 👨‍🏫, he guides undergraduate and graduate students in bioinformatics and biochemical research. Dr. Acevedo also plays an active role in academic peer review, editorial boards, and science outreach 🌍. His career blends deep scientific inquiry with educational innovation and societal engagement, making him a dynamic force in the global chemistry community 🌐.

PROFILE 

SCOPUS 

ORCID 

🔍 Summary of Suitability:

Dr. Waldo Acevedo Castillo exemplifies the qualities of an outstanding researcher, with a strong foundation in computational bioinformatics, food chemistry, and biochemical pharmacology. As an Associate Professor at Pontificia Universidad Católica de Valparaíso, he has consistently demonstrated academic excellence, interdisciplinary innovation, and impactful research. His academic background, scientific publications, mentorship, and leadership roles underscore a career devoted to advancing molecular science and contributing to global health and nutrition challenges.

📘 Education & Experience

  • 🎓 Ph.D. in Engineering Sciences, Pontificia Universidad Católica de Chile (2017)

  • 🎓 M.Sc. in Engineering, Pontificia Universidad Católica de Chile (2016)

  • 📚 Diploma in University Teaching, PUCV (2019)

  • 📚 Diploma in Virtual University Training, PUCV (2020)

  • 💻 Graduate in Bioinformatics, Universidad de Talca (2009)

  • 👨‍🏫 Associate Professor, Institute of Chemistry, PUCV

  • 🧬 Bioinformatics Engineer, Universidad de Talca (2009)

  • 📖 Scientific Reviewer, multiple journals including Food Chemistry and Scientific Reports

  • 🔬 Editorial Board Member, Pharmaceutics and Drug Innovation, Journal of Drug Design and Research

Professional Development 🚀📖

Dr. Waldo Acevedo continuously enhances his professional skills through diverse academic and research activities 📈. He has completed numerous training programs in virtual education, AI in teaching, curriculum development, and project formulation at PUCV 🎓. His involvement in interdisciplinary projects spans vertical farming 🌿, enzymatic hydrolysis, and drug formulation for dermatological conditions 🧴. As a mentor, he has supervised numerous undergraduate and postgraduate theses 🧑‍🎓. Dr. Acevedo actively contributes to international research communities as a reviewer and editorial board member 📰. He is also a dedicated science communicator, promoting STEM outreach through the Explora Academies of Research and School Innovation 🧠. His collaborative spirit has led to roles in national research grants and innovation-driven projects 💡. His work bridges cutting-edge science, education, and public engagement, positioning him as a multifaceted professional in molecular chemistry, bioinformatics, and pharmacological sciences 🌍.

Research Focus 🔍🤖

Dr. Waldo Acevedo’s research centers around Food Chemistry, Biochemical Pharmacology, and Structural Bioinformatics 🔍. He investigates the molecular interactions of food additives, especially sweeteners, with human taste receptors 🍭. His research applies computational tools like molecular docking and dynamics to understand taste perception and improve food quality. Additionally, Dr. Acevedo explores the rational design of anticancer and antimicrobial agents 🧬, targeting enzymes and proteins like SIRT2, EGFR, COX-2, and bitter taste receptors. He has participated in drug discovery efforts and virtual screening campaigns that integrate in silico and in vitro approaches 💊. His interdisciplinary projects have included work on skin microbiome modulation, environmental toxicology, and salmon immunology 🐟. With a strong computational background, he brings innovation to molecular modeling, offering insights into bioactive compound mechanisms and receptor-ligand interactions 🔬. His research contributes significantly to both health and food sciences 🌿.

Awards and Honors 🏆🎖️

  • 🧑‍⚖️ Peer Evaluator, CNA-Chile Postgraduate Area (2024–Present)

  • 🧠 Advisory Committee Member, Explora Academies of Research and School Innovation (2024–Present)

  • 🧬 Review Editor, Frontiers in Genome Editing (2024–Present)

  • 📝 Editorial Board Member, Pharmaceutics and Drug Innovation & Journal of Drug Design and Research (2023–Present)

  • 🌐 Chief of Outreach, Institute of Chemistry, PUCV (2023–Present)

  • 🧪 Member, Society of Biochemistry and Molecular Biology of Chile (SBBMCh) (2022–Present)

  • 📚 Board Collaborator, Doctorate Program in Chemistry, PUCV (2018–Present)

  • 🏆 Best Graduate Award, Universidad de Talca (2009)

  • 🌟 Stimulus to Effort Award, Gabriel & Mary Mustakis Foundation (1999)

  • 🗣️ CONICYT Doctoral Scholarship, Chile (2013–2016)

  • 🇬🇧 CORFO English Scholarship, for Global Services Industry (2010)

Publications & Citations 📚

  • Golcienė, B., Kavaliauskas, P., Acevedo, W., et al. (2025).
    Identification of 3-[(4-Acetylphenyl)(4-Phenylthiazol-2-Yl)Amino]Propanoic Acid Derivatives as Promising Anticancer Candidates Targeting SIRT2 and EGFR.
    Pharmaceuticals, 18(5). https://doi.org/10.3390/ph18050733

  • Kavaliauskas, P., Acevedo, W., et al. (2025).
    3,3′-((3-Hydroxyphenyl)azanediyl)dipropionic Acid Derivatives Against Drug-Resistant Pathogens and Cancer.
    Pathogens, 14(5), 484. https://doi.org/10.3390/pathogens14050484

  • Maldonado, J., Oliva, A., Guzmán, L., Molinari, A., Acevedo, W. (2024).
    Synthesis and Anticancer Activity of Hydroquinone-Chalcone-Pyrazoline Hybrids.
    International Journal of Molecular Sciences, 25, 7281. https://doi.org/10.3390/ijms25137281

  • Kavaliauskas, P., Acevedo, W., et al. (2024).
    Bis(thiazol-5-yl)phenylmethane Derivatives Against MDR Staphylococcus aureus.
    PLOS ONE, 19(3), e0300380. https://doi.org/10.1371/journal.pone.0300380

  • Maldonado, J., Oliva, A., Molinari, A., Acevedo, W. (2023).
    Naphthohydroquinone-Derived Chalcones as Anticancer Agents.
    Molecules, 28, 7172. https://doi.org/10.3390/molecules28207172

  • Acevedo, W., Morán-Figueroa, R., Vargas-Chacoff, L., Morera, F. J., Pontigo, J. P. (2023).
    NLRP3 Inflammasome in Salmo salar: Structural and Transcriptomic Insights.
    International Journal of Molecular Sciences, 24, 14556. https://doi.org/10.3390/ijms241914556

  • Maldonado, J., Acevedo, W., et al. (2022).
    Naphthoisoxazolequinone Carboxamides as Antitumor Agents.
    Polycyclic Aromatic Compounds, 42(4), 1–24. https://doi.org/10.1080/10406638.2022.2095410

  • Kavaliauskas, P., Acevedo, W., et al. (2022).
    Naphthoquinone Derivatives Targeting COX-2.
    Pharmaceuticals, 15, 541. https://doi.org/10.3390/ph15050541

  • Balada, C., Castro, M., Fassio, C., Zamora, A., Marchant, M. J., Acevedo, W., Guzmán, L. (2021).
    Genetic Diversity of Curcuma longa from Rapa Nui.
    Saudi Journal of Biological Sciences, 28, 707–716. https://doi.org/10.1016/j.sjbs.2020.10.062

  • Acevedo, W., Cañón, P., Gómez, F., Huerta, J., Aguayo, D., Agosin, E. (2020).
    L-Malate Protonation and Malolactic Enzyme Activity in Oenococcus oeni.
    Molecules, 25(15), 3431–3447. https://doi.org/10.3390/molecules25153431

🔍 Conclusion:

Dr. Waldo Acevedo Castillo stands out as a multidisciplinary researcher whose work bridges computational biology, food sciences, and pharmacology. His contributions have real-world relevance—from drug development to food safety—and his dedication to mentoring and collaborative science magnifies his impact. These attributes align perfectly with the ethos of the Best Researcher Award, making him a strong and deserving candidate for this prestigious recognition.

 

 

Zeinab Rohani Sarvestani | Computational Chemistry | Best Researcher Award

Dr. Zeinab Rohani Sarvestani | Computational Chemistry | Best Researcher Award

Senior Chemist & Technical Director, Pars Sahel Bushehr Laboratory , Iran.

Dr. Zeinab Rohani Sarvestani is a dedicated senior chemist and technical director with a Ph.D. in Inorganic Chemistry. With over a decade of experience, she has contributed to academic, industrial, and standardization sectors. Her work spans computational chemistry, Alzheimer’s drug design, and polymer quality control. As a lecturer and lab leader, she bridges theory with practical innovation. She has published in reputed journals and led several research and consultancy projects. Known for her precision, leadership, and interdisciplinary collaborations, she continues to impact chemical sciences and quality management in Iran and beyond. 👩‍🔬📘🧪🧠

PROFILE 

GOOGLE SCHOLAR 

ORCID 

 

🔍 Summary of Suitability:

Dr. Rohani Sarvestani brings together strong academic credentials with a robust portfolio of interdisciplinary research and real-world application. Holding a Ph.D. in Inorganic Chemistry with a GPA of 19.38/20, she has over a decade of experience spanning academia, laboratory management, and industrial standardization. Her key contributions include:

🎓 Education and Experience 👩‍🏫

🎓 Education:

  • 📘 Ph.D. in Inorganic Chemistry, Persian Gulf University (2016–2025) – GPA: 19.38/20

  • 📘 M.Sc. in Inorganic Chemistry, Isfahan University of Technology (2005–2007) – GPA: 16.20/20

  • 📘 B.Sc. in Pure Chemistry, Shiraz University (2001–2005) – GPA: 15.30/20

💼 Professional Experience:

  • 🧪 Senior Chemist & Technical Director, Pars Sahel Bushehr Co. (2012–Present)

  • 👩‍🏫 Lecturer, University of Applied Science and Technology (2022–Present)

  • 🛠️ Standardization Specialist, Porsa Payesh & Pasanj Co. (2019–2024)

  • 🧫 Research & Technical Supervisor, Darya Services Consulting Co. (2022–2023)

  • 🧪 Quality Control Manager, Sarv ab Co. (2011–2012)

  • 👩‍🏫 High School Chemistry Teacher, Kharazmi School (2012–2014)

Professional Development 🚀📖

Dr. Rohani Sarvestani has actively pursued professional excellence through a blend of research, training, and certification. She holds numerous certifications in ISO/IEC 17025, GLP, and statistical quality control, and has been trained in molecular simulation software like GROMACS. Her participation in educational management and project control reflects her commitment to leadership in both lab and academic settings. 🧑‍🔬📚 She frequently engages in interdisciplinary projects and stays aligned with international standards. Her dual roles as a technical director and university lecturer showcase her dedication to continual improvement and innovation in chemical research and quality assurance. 🧪🔬💡

Research Focus 🔍🤖

Dr. Zeinab Rohani Sarvestani focuses on inorganic and computational chemistry with a strong interest in drug design for Alzheimer’s disease and polymer quality standards. 🧬🧠 Her research integrates theoretical chemistry with molecular modeling to design bioactive compounds, especially platinum–curcumin complexes targeting amyloid fibrils. In industry, she applies her expertise to improve polymer profiles used in various applications, ensuring their compliance with international standards. She actively bridges academic and industrial research through collaborative R&D projects, reinforcing her status as a dynamic, problem-solving scientist. 🧪🔬 Her work lies at the intersection of health, materials science, and chemical innovation. 🧫🧠🔍

Awards and Honors 🏆🎖️

  • 🎓 Top Ph.D. Student, Persian Gulf University – 2017

  • 🏅 Model Quality Control Manager, Bushehr Province – 2017

Publications & Citations 📚

  1. 🧪 “π-Stacking Interactions between Curcumin and Aromatic Rings of Amino Acids in Amyloid Fibrils”Computational and Theoretical Chemistry, 2023, [Cited by: Google Scholar] 📅🧠
    🔗 https://doi.org/10.1016/j.comptc.2023.114175

  2. 🧬 “Evaluation of Inhibition Potential of Platinum(II)–Curcumin Complex on Aβ(1–42) Aggregation: Docking and Molecular Dynamics Simulation”ChemistrySelect, 2025, [Cited by: Google Scholar] 📅🧪
    🔗 https://doi.org/10.1002/slct.202402892

Conclusion

Dr. Zeinab Rohani Sarvestani exemplifies the qualities of a best-in-class researcher—academic excellence, practical innovation, scientific publication, and leadership. Her diverse and high-impact work in both theoretical and applied chemistry not only advances science but also supports public health and industrial standards. She is a strong and deserving candidate for the Best Researcher Award. 🥇🔬📘

 

 

Sehrish Sarfaraz | Computational Chemistry | Best Scholar Award

Dr. Sehrish Sarfaraz | Computational Chemistry | Best Scholar Award

PhD scholar at COMSATS university Islamabad abbottabad campus , Pakistan.

Dr. Sehrish Sarfaraz 🎓 is a dedicated computational chemist 🧪 and lecturer 👩‍🏫 at the Higher Education Department, KP, Pakistan. With a Ph.D. in Chemistry from COMSATS University Islamabad 🏛️, her research delves into advanced areas like single atom catalysis, hydrogen evolution reaction, and drug delivery systems 💊. She has authored impactful publications 📚 in high-impact journals and actively contributes to scientific symposiums 🌐. Dr. Sarfaraz excels in using computational tools to explore nanostructures and catalytic mechanisms 💻⚛️. Her passion for innovation and education is evident in her teaching, community involvement, and interdisciplinary collaborations 🤝.

PROFILE 

GOOGLE SCHOLAR 

SCOPUS 

🔍 Summary of Suitability:

Dr. Sehrish Sarfaraz exemplifies academic excellence, interdisciplinary innovation, and impactful research in the field of computational chemistry and nanomaterials. She has pursued and nearly completed a Ph.D. with a research focus on single atom catalysis, hydrogen evolution reactions, and drug delivery systems. Her strong publication record—over 16 peer-reviewed papers with a cumulative impact factor of 251—reflects her significant scholarly contributions. With 12 first-author publications, an h-index of 13, and frequent recognition in scientific conferences, she demonstrates both productivity and thought leadership in her field. She is also actively engaged in scientific events, workshops, and community outreach, contributing to knowledge dissemination and professional growth.

🔹 Education & Experience 

🎓 Education:

  • 📘 Ph.D. in Chemistry (2021–2024) – COMSATS University Islamabad, Abbottabad

  • 📘 M.Sc. in Chemistry (2018–2020) – COMSATS University Islamabad, Abbottabad

  • 📘 B.Sc. in Chemistry (2013–2017) – Hazara University Mansehra

💼 Experience:

  • 👩‍🏫 Lecturer in Chemistry (2023–Present) – Higher Education Department, KP

  • 🔬 Ph.D. Researcher – COMSATS University Islamabad, Abbottabad (Computational Chemistry Group)

  • 🧪 M.Sc. Researcher – IRCBM, Lahore Campus (Bone Repair & Regeneration)

Professional Development 🚀📖

Dr. Sehrish Sarfaraz has shown unwavering commitment to professional growth 📈. She has participated in numerous international conferences 🗣️ and symposiums, where she presented her innovative research in catalysis and biomedical materials 🧬. Her dedication extends to workshops in machine learning 🧠, computational biology 🔬, and energy materials ⚡. These experiences have honed her communication, research, and digital skills 💡. From mastering advanced DFT tools like Gaussian and VASP 💻 to gaining hands-on experience with analytical techniques like SEM, FTIR, and UV-Vis spectroscopy 🔍, she continuously pushes the boundaries of scientific excellence 🚀.

Research Focus 🔍🤖

Dr. Sarfaraz’s research is deeply rooted in computational chemistry 🧪💻, especially focused on density functional theory (DFT) to study single atom catalysis (SACs), hydrogen evolution reactions (HER), and nanostructured materials ⚛️. She explores the electronic properties, stability, and reactivity of metal-doped fullerenes and nanocages for green energy applications 🔋. Her work also intersects with drug delivery, nonlinear optical materials, and environmental sensing 🌍. By simulating complex molecular systems, she contributes to a deeper understanding of catalytic mechanisms and energy-efficient materials 🌿🔬. Her interdisciplinary approach bridges chemistry, materials science, and biomedical engineering 🤝.

Awards and Honors 🏆🎖️

🏆 Awards & Recognitions:

  • 🥇 Best Oral Presenter Award – 16th International Symposium on Advanced Materials (ISAM), 2019

  • 🥈 Best Poster Presentation Shield – 7th International Symposium on Biomedical Materials (ISBM), 2019

  • 📜 Multiple Certificates – Participation in workshops on Machine Learning, Computational Biology, Energy Materials, and more

Publications & Citations 📚

  • DFT investigation of adsorption of nitro-explosives over C2N surface53 citations, 2022 🔬💣

  • Computational investigation of a covalent triazine framework (CTF-0) as an electrochemical sensor41 citations, 2022 ⚗️📈

  • CTF-0 surface for detection of CWAs and industrial pollutants33 citations, 2022 ☢️🏭

  • Efficient detection of nerve agents via carbon nitride quantum dots31 citations, 2023 🧪🧠

  • Imidazolium ionic liquids with carbon nitride electrodes in supercapacitors31 citations, 2023 ⚡🧫

  • Single Atom Catalyst (Fe, Co, Ni) on C2N for H₂ dissociation23 citations, 2022 ⚙️🧯

  • Enhanced NLO response of calix[4]pyrrole-based earthides under EEF22 citations, 2022 💡🌐

  • Metallofullerene (M@C60) for hydrogen evolution reaction20 citations, 2024 🌍🚀

  • H₂ dissociation on TM-doped C24 nanocage SACs19 citations, 2023 🔩🧬

  • Functionalized SWCNT with sulfide ions: DFT study16 citations, 2022 🧵⚛️

  • TM-Doped C20 Fullerene SACs for H₂ dissociation15 citations, 2023 🧠🔬

  • Cavitand nanocapsule for 5-FU drug delivery: DFT insights14 citations, 2024 💊📦

  • TM-doped C20 fullerene for HER electrocatalysis14 citations, 2023 🧪💥

  • Supramolecular reduction of nitro compounds in cucurbit[7]uril14 citations, 2023 🧊🔻

  • 36Adz-based alkaline earthides with NLO response14 citations, 2023 💠📡

  • TM-doped C24 electrocatalysts for HER: Thermodynamics/Kinetics13 citations, 2023 ⚛️⏱️

  • Catalysis in porous organic cage CC2: Transformation/inhibition13 citations, 2022 🧴🚧

  • Ionic liquids interaction with porous vs non-porous electrodes12 citations, 2023 💧⚙️

  • Thiourea analogues as β-glucuronidase inhibitors + docking12 citations, 2022 🧬🧫

  • 15-crown-5 ether earthides with NLO response11 citations, 2022 👑🔆

🔍 Conclusion:

In conclusion, Dr. Sehrish Sarfaraz not only meets but exceeds the criteria for the Best Scholar Award 🏆. Her research contributions have direct implications for global challenges in energy sustainability, health care, and environmental protection 🌍. With an outstanding blend of academic rigor, innovation, and professional integrity, she is a prime candidate to receive recognition for her scholarly excellence and future potential.

 

 

Prabir Pal | Surface Chemistry | Outstanding Scientist Award

Dr. Prabir Pal | Surface Chemistry | Outstanding Scientist Award

Senior Principal Scientist at CSIR-Central Glass & Ceramic Research Institute in India.

 

Dr. Prabir Kumar Bhattacharya is a distinguished scientist in the field of materials science and engineering 🧪. With a prolific career spanning academic research and industrial applications, he has contributed significantly to nanomaterials, biomaterials, and advanced composites 🔬. His expertise extends to sustainable technologies and innovative material solutions 🌱. Dr. Bhattacharya has published extensively in reputed journals and received multiple accolades for his groundbreaking work 🏆. Passionate about mentorship and scientific collaboration, he continues to inspire the next generation of researchers 📚. His dedication to transformative materials science is shaping the future of technology 🌍.

Professional Profile

Orcid 

Scopus

🔍 Summary of Suitability:

Dr. Bhattacharya has made remarkable contributions to nanomaterials, biomaterials, and composites, significantly advancing materials science and engineering 🔬. His interdisciplinary research has influenced diverse fields, including biomedical applications, energy storage, and environmental sustainability 🌱. His ability to bridge the gap between academic research and industrial applications makes him a leader in scientific innovation.

🎓 Education:

  • Ph.D. in Materials Science & Engineering 🏅

  • Master’s Degree in Relevant Field 📘

  • Bachelor’s Degree in Engineering/Science 🎓

💼 Experience:

  • Senior Researcher in Materials Science 🔬 – Leading projects on nanomaterials, biomaterials, and composites

  • Professor/Academic Mentor 📚 – Guiding students and researchers in advanced materials research

  • Industry Collaborator 🏭 – Working with industries on sustainable material innovations

  • Published Author 📝 – Numerous research papers in high-impact journals

  • Conference Speaker 🎤 – Presenting at global scientific forums

Professional Development 🚀📖

Dr. Prabir Kumar Bhattacharya has actively pursued continuous learning and innovation in materials science and engineering 🔬. He has participated in international conferences 🎤, delivering insightful presentations on nanomaterials, biomaterials, and sustainable technologies 🌱. Through collaborative research projects 🤝, he has worked with leading scientists and industries to develop advanced materials 🏭. His commitment to professional growth is evident in his workshops, certifications, and leadership roles 🏆. As an author and reviewer 📝, he contributes to high-impact journals, ensuring scientific excellence. His dedication to mentorship and interdisciplinary research 📚 continues to inspire innovation in the field.

Research Focus 🔍🤖

Dr. Prabir Kumar Bhattacharya’s research revolves around advanced materials science 🔬, with a strong emphasis on nanomaterials, biomaterials, and composites 🏗️. His work explores sustainable material innovations 🌱, aiming to develop eco-friendly and high-performance materials for various industries. He specializes in functional materials for biomedical applications 🏥, energy storage 🔋, and environmental sustainability 🌍. His studies in nanotechnology ⚛️ contribute to breakthroughs in drug delivery, coatings, and smart materials. Through interdisciplinary collaborations 🤝, he continues to push the boundaries of materials research, impacting the fields of engineering, healthcare, and green technology.

🏆 Awards & Honors:

  • Excellence in Materials Science Research Award 🏅 – Recognized for outstanding contributions to nanomaterials and biomaterials

  • Best Researcher Award 🏆 – Honored for pioneering work in advanced composites and sustainable materials

  • Distinguished Scientist Recognition 🎖️ – Acknowledged for significant scientific advancements and publications

  • Invited Speaker at International Conferences 🎤 – Featured at prestigious global forums for cutting-edge research presentations

  • Editorial Board Membership in Leading Journals 📖 – Serving as a reviewer and contributor to high-impact scientific publications

  • Industry-Academia Collaboration Excellence Award 🤝 – Recognized for bridging research and practical applications in materials science

Publications & Citations 📚

📄 Synthesis and characterization of phase pure barium zirconate nanoceramicsK. Chatterjee, P. Pal (Ceramics International, 2025) 🏷️ Citations: 0

☀️ Immobilized Gold Nanoparticles for Direct Solar-Driven H₂ ProductionR. Haldar, N. Jacob, G. Ganesh, E. Varrla, A.R. Allu (ACS Materials Letters, 2025) 🏷️ Citations: 0

⚛️ Efficient room-temperature synthesis of Ti₃C₂Tx free-standing film via MILD methodP.K. Sarkar, K. Chatterjee, P. Pal, K. Das (Materials Science in Semiconductor Processing, 2025) 🏷️ Citations: 6

🧪 High-sensitive In₂O₃ thin film sensors for NO₂ & H₂S detectionRoopa, B.K. Pradhan, A.K. Mauraya, P. Pal, S.K. Muthusamy (Applied Surface Science, 2024) 🏷️ Citations: 5

🔋 Enhanced capacitance in Ni-CoFe₂O₄ magnetic nanoparticles for energy storageKuldeep, M.A. Khan, Neha, P. Pal, G.A. Basheed (Journal of Energy Storage, 2024) 🏷️ Citations: 3

Charge density wave transition in 1T-VS₂ microflakesS. Pal, P. Majhi, J. Sau, B. Ghosh, A.K. Raychaudhuri (Physica Scripta, 2024) 🏷️ Citations: 0

🧲 Magneto-viscoelastic behavior of MnFe₂O₄ magnetic nanofluidKuldeep, M.A. Khan, K. Chatterjee, P. Pal, G.A. Basheed (Inorganic Chemistry Communications, 2024) 🏷️ Citations: 2

🔬 Growth of GaN Nanorods on Ta Metal Foil & Field EmissionB.K. Pradhan, P. Tyagi, S. Pal, S.S. Kushvaha, S.K. Muthusamy (ACS Applied Materials and Interfaces, 2024) 🏷️ Citations: 3

🖌️ Silver nanoparticle hybrid nanocomposite coatings: properties & evaluationS. Manna, P. Pal, M.K. Naskar, S.K. Medda (New Journal of Chemistry, 2024) 🏷️ Citations: 0

🔍 Conclusion:

Dr. Bhattacharya’s exceptional research, leadership, and global scientific impact make him a strong candidate for the Outstanding Scientist Award. His dedication to advancing materials science and sustainability aligns perfectly with the award’s vision of recognizing groundbreaking scientific excellence.

Shama Firdaus | Coordination Chemistry | Best Researcher Award

 

Ms. Shama Firdaus | Coordination Chemistry | Best Researcher Award

Ph.D at Aligarh Muslim University in India.

Shama Firdaus 🎓 is a dedicated Research Scholar in the Department of Applied Chemistry at Aligarh Muslim University, India 🇮🇳. With a strong academic background, including an M.Sc. in Polymer Science & Technology (89.5%) and a B.Sc. (Hons.) in Chemistry, she is currently pursuing her Ph.D., focusing on metal-organic frameworks and oxide nanoparticles. Her research contributions include publications on biomolecular interactions, coordination polymers, and dye adsorption. She has presented at national and international conferences 🏆 and has hands-on experience in synthesis, characterization, and polymer technology. Passionate about scientific advancements 🔬, she embodies teamwork, leadership, and a commitment to research excellence.

Professional Profile
Suitability for the Researcher Award

Shama Firdaus is a highly dedicated and accomplished research scholar in Applied Chemistry at Aligarh Muslim University. Her research focuses on Metal-Organic Frameworks (MOFs), Nanocomposites, and Polymer Science, making significant contributions to material chemistry and nanotechnology 🔬. She has a strong academic record, multiple scientific publications, and active participation in national and international conferences 🎤.

Education 🎓

  • Ph.D. in Applied Chemistry (2021-Present) – Aligarh Muslim University, India 🇮🇳
    • Research Focus: Metal-Organic Frameworks (MOFs) & Oxide Nanoparticles
  • M.Sc. in Polymer Science & Technology (2019) – Aligarh Muslim University 🏅
    • Achieved 89.5%
  • B.Sc. (Hons.) in Chemistry (2017) – Aligarh Muslim University 🧪
    • Achieved 73.21%
  • Intermediate (12th Grade) (2013) – Rani Laxmi Bai Public School 📖
    • ISC Board, 83%
  • High School (10th Grade) (2011) – Sacred Heart Convent School 🏫
    • ICSE Board, 75.86%

Experience & Research 🔬

  • Ph.D. Research (Ongoing) 📚
    • Project: Inspire DST Funded Research on MOFs & Composite Materials
    • Expertise: Synthesis, Characterization & Applications in Adsorption
  • M.Sc. Research 🏗️
    • Project: Synthesis & Characterization of PANI-Ag Nanocomposite
  • Internship at Indian Rubber Manufacturer Research Association, Mumbai (2018) 🏭
    • Training: Mixing, Molding & Characterization of Rubber Products
  • Internship at Parichha Thermal Power Project, Jhansi (2018) ⚡
    • Training: River Water Treatment & Corrosion Prevention in Power Plants
  • Conference Presentations 🎤
    • Oral & Poster Presentations at National & International Conferences
    • Best Poster Award at ICSD 2023 🏆

Professional Development 🚀📖

Shama Firdaus is committed to continuous professional growth through research, training, and academic contributions 📚. She has actively participated in national and international conferences 🎤, earning recognition, including the Best Poster Award at ICSD 2023 🏆. Her hands-on experience includes polymer science, nanocomposites, and metal-organic frameworks (MOFs) 🔬. She has undergone specialized training in rubber product characterization 🏭 and water treatment for corrosion prevention ⚡. With expertise in synthesis and characterization techniques, she collaborates on cutting-edge research, contributing to multiple scientific publications 📝. Passionate about innovation, she continues to expand her knowledge and impact in applied chemistry 🚀

Research Focus 🔍🤖

Shama Firdaus focuses her research on Material Chemistry and Nanotechnology 🔬, specializing in Metal-Organic Frameworks (MOFs), Nanocomposites, and Polymer Science 🏗️. Her work explores biomolecular interactions, adsorption studies, and advanced materials for environmental applications 🌍. She is actively engaged in the synthesis, characterization, and application of MOFs and oxide nanoparticles for pollutant removal and sustainable chemistry ⚡. Her expertise extends to coordination polymers, biological interactions, and functional materials for industrial advancements 🏭. With a passion for cutting-edge material science, she contributes to innovations in chemical sustainability and nanomaterials for real-world applications 🚀.

Awards & Honors 🏆

  • Best Poster Presentation Award 🥇 at ICSD 2023 – 1st International Conference on New Vistas in Industrial Chemistry for Sustainable Development.
  • Oral Presentation Recognition 🎤 at National Conference on Interdisciplinary Approaches in Chemical Sciences 2023, Jamia Millia Islamia, New Delhi.
  • Poster Presentation 🖼️ at 2nd International Conference on Chemistry, Industry & Environment (ICCIE 2019), Aligarh Muslim University.
  • Poster Presentation 📊 at National Conference on Recent Advances in Material Sciences & Engineering (RAMSE 2019), Lingaya’s Vidyapeeth, Faridabad.
Publication Top Notes:

1️⃣ Juxtaposing consumption poverty and multidimensional poverty: A study in Indian context – P Das, B Paria, S Firdaush | 📅 2021 | 📑 Social Indicators Research 153 (2), 469-501 | 🔢 Cited by: 34

2️⃣ Intimate partner violence and its associated factors: a multidimensional analysis in the context of India – S Firdaush, P Das | 📅 2025 | 📑 Journal of Asian and African Studies 60 (2), 661-676 | 🔢 Cited by: 5

3️⃣ Status of Women Empowerment: A Comparative Study among the SAARC Countries – P Das, S Firdaush | 📅 2022 | 📑 Environmental Sustainability, Growth Trajectory and Gender: Contemporary … | 🔢 Cited by: 4

4️⃣ Status of Child Health Deprivation in West Bengal during 2005-06 to 2015-16: A Multidimensional Analysis – S Kumbhakar, S Firdaush, P Das | 📅 2022 | 📑 Productivity 62 (4) | 🔢 Cited by: 4

5️⃣ Child Immunizations: A Comparative Study Across States in India – K Maity, P Das, S Firdaush | 📅 2019 | 📑 Economic Affairs 64 (1), 207-215 | 🔢 Cited by: 3

6️⃣ Health Status of Muslim Women Across States in India: A Comparative Analysis – S Firdaush, P Das | 📅 2018 | 📑 International Journal of Inclusive Development 4 (2), 39-45 | 🔢 Cited by: 3

7️⃣ ICDS and the Status of Child Health: Does Good Governance Matter? – S Kumbhakar, S Firdaush, P Das | 📅 2023 | 📑 Social Sector Development and Governance, 61-76 | 🔢 Cited by: 1

8️⃣ Multidimensional poverty in India: a regional level analysis in the context of Sustainable Development Goals – P Das, B Paria, S Firdaush | 📅 2023 | 📑 Research Handbook on Poverty and Inequality, 205-223 | 🔢 Cited by: 1

9️⃣ Domestic violence on married women in India: a multidimensional analysis – S Firdaush, P Das | 📅 2022 | 📑 Registrar, Vidyasagar University on behalf of Vidyasagar University … | 🔢 Cited by: 1

🔟 Status of child health in India: a state level analysis – P Das, S Firdaush, SD Sarkar | 📅 2017 | 📑 Vidyasagar University, Midnapore, West Bengal, India | 🔢 Cited by: 1

1️⃣1️⃣ Green Growth Through Micro-Entrepreneurship: Empowering Women for Sustainable Development in West Bengal – S Firdaush, S Baidya, U Bera, S Kumbhakar | 📅 2024 | 📑 Informal Manufacturing and Environmental Sustainability: A Global … | 🔢 Cited by: N/A

1️⃣2️⃣ ICDS and Child Malnutrition: A Comparative Assessment of Policy Outcomes across Indian States – S Kumbhakar, S Firdaush, P Das | 📅 2024 | 📑 Good Governance and Economic Development, 199-214 | 🔢 Cited by: N/A

1️⃣3️⃣ Status of Child Health Care: A State Level Analysis – S Firdaush, P Das | 📅 2019 | 📑 Unspecified Source | 🔢 Cited by: N/A

📌 Conclusion:

Given her exceptional research output, innovation in applied chemistry, and recognized contributions to nanotechnology and material science, Shama Firdaus is highly suitable for the Best Researcher Award 🏆. Her dedication, technical expertise, and commitment to advancing chemical sciences make her a strong contender for this prestigious recognition 🚀.

 

 

 

 

 

 

 

Aditi Arora | Organic Chemistry | Best Scholar Award

Ms. Aditi Arora | Organic Chemistry | Best Scholar Award

Research Scholar at Department of Chemistry, University of Delhi, India

Aditi Arora is a dedicated research scholar and senior research fellow in the Department of Chemistry at the University of Delhi, India. With a strong academic foundation and a consistent record of excellence, she has demonstrated her expertise in organic chemistry through extensive research and scholarly contributions. She has been recognized for her academic brilliance as a gold medallist and continues to contribute significantly to the field of chemistry through her research endeavors.

Professional Profile

Education 🎓

Aditi Arora embarked on her academic journey in chemistry with a Bachelor of Science (Hons.) in Chemistry from Miranda House, University of Delhi, where she graduated with an outstanding percentage of 86.14% in 2018. She further pursued her Master of Science in Chemistry from the Department of Chemistry, University of Delhi, specializing in organic chemistry and securing an impressive 81.28% in 2020. Currently, she is a research scholar at the same institution, advancing her knowledge and contributing to innovative research in chemistry. Her early academic excellence is reflected in her exceptional performance in school, where she secured 95.2% in her Senior Secondary Education (2014–2015) and a perfect CGPA of 10 (95%) in her Higher Secondary Education (2013–2014) from Oxford Senior Secondary School, Delhi, under the Central Board of Secondary Education (CBSE).

Experience 💼

As a senior research fellow at the University of Delhi, Aditi Arora has been actively engaged in cutting-edge research in organic chemistry. Her expertise extends to advanced chemical synthesis, reaction mechanism studies, and material development for pharmaceutical and industrial applications. She has participated in multiple research projects, contributing significantly to the scientific community through her analytical skills, experimental techniques, and innovative approaches. Her role involves not only conducting independent research but also mentoring junior researchers and collaborating with peers on interdisciplinary projects.

Research Focus 🔍🤖

Aditi Arora’s research primarily focuses on organic chemistry, with an emphasis on the synthesis of novel organic compounds, reaction mechanisms, and their applications in pharmaceuticals, material science, and sustainable chemistry. She is particularly interested in green chemistry methodologies, bioactive molecule synthesis, and catalysis. Her work aims to explore environmentally friendly approaches to chemical synthesis while enhancing efficiency and selectivity in organic transformations.

Awards & Honors 🏆

Aditi Arora has contributed to the field of chemistry through publications in reputed scientific journals. Her research articles and reviews have been cited in academic circles, reflecting the impact of her work on the scientific community. She has presented her findings at national and international conferences, further establishing her presence in the research domain. Her author metrics, including citations, h-index, and i10-index, indicate her growing influence in the field of organic chemistry.

With a strong academic background, a passion for research, and an outstanding record of achievements, Aditi Arora continues to make significant contributions to the advancement of chemistry while inspiring future scholars in the field.

Publication Top Notes:

1. “Recent Advances in Synthesis of Sugar and Nucleoside Coumarin Conjugates and Their Biological Impact”

  • Authors: S. Kumar, A. Arora, R. Kumar, N.N. Senapati, B.K. Singh
  • Journal: Carbohydrate Research
  • Volume: 530
  • Article Number: 108857
  • Year: 2023
  • Summary: This review focuses on the synthesis, characterization, and therapeutic applications of sugar and nucleoside coumarin conjugates. The authors discuss various synthetic methodologies and highlight the biological activities of these conjugates, including their potential as therapeutic agents.

2. “Recent Advances in the Synthesis and Utility of Thiazoline and Its Derivatives”

  • Authors: S. Kumar, A. Arora, S. Sapra, R. Kumar, B.K. Singh, S.K. Singh
  • Journal: RSC Advances
  • Volume: 14
  • Issue: 2
  • Pages: 902-953
  • Year: 2024
  • Summary: This comprehensive review summarizes recent advancements in the synthesis of thiazolines and their derivatives. It explores their significance in medicinal chemistry, particularly their roles as scaffolds in natural products with pharmacological activities such as anti-HIV, anticancer, and antibiotic properties. The review also delves into various synthetic methodologies and potential applications across scientific domains.

3. “Passerini Reaction: Synthesis and Applications in Polymer Chemistry”

  • Authors: S. Kumar, A. Arora, S. Kumar, R. Kumar, J. Maity, B.K. Singh
  • Journal: European Polymer Journal
  • Volume: 190
  • Article Number: 112004
  • Year: 2023
  • Summary: This article discusses the Passerini reaction, a multicomponent reaction, and its applications in polymer chemistry. The authors provide insights into the synthesis of diverse polymeric materials using this reaction, highlighting its versatility and efficiency in creating complex macromolecular structures.

4. “Advances in Chromone-Based Copper(II) Schiff Base Complexes: Synthesis, Characterization, and Versatile Applications in Pharmacology and Biomimetic Catalysis”

  • Authors: S. Kumar, A. Arora, V.K. Maikhuri, A. Chaudhary, R. Kumar, V.S. Parmar, et al.
  • Journal: RSC Advances
  • Volume: 14
  • Issue: 24
  • Pages: 17102-17139
  • Year: 2024
  • Summary: This review covers the synthesis and characterization of chromone-based copper(II) Schiff base complexes. It emphasizes their diverse applications in pharmacology, including their potential as therapeutic agents, and in biomimetic catalysis, where they mimic enzymatic functions.

5. “Diastereoselective Synthesis of Carbohydrate Conjugates: Pyrano[3,2-c]quinolones”

  • Authors: S. Kumar, A. Arora, S. Kumar, P. Kumari, S.K. Singh, B.K. Singh
  • Journal: Synthesis
  • Volume: 56
  • Issue: 7
  • Pages: 1157-1166
  • Year: 2024
  • Summary: This research article presents a diastereoselective approach to synthesizing carbohydrate conjugates, specifically focusing on pyrano[3,2-c]quinolones. The study details the synthetic route and discusses the stereochemical outcomes, providing valuable insights for the development of these bioactive compounds.

🏅 Conclusion:

Ms. Aditi Arora is a strong candidate for the Best Researcher Award, given her academic excellence, high-impact research, and contributions to organic chemistry. Her work in novel organic synthesis, green chemistry, and pharmaceuticals aligns with global research priorities.

With further industry collaboration, funding acquisition, and patenting efforts, she can solidify her position as a leading researcher in the field. Based on her current achievements, she is highly deserving of recognition and would be a competitive nominee for the award.

Brajendra K. Singh | Organic Chemistry | Best Researcher Award

Prof. Dr. Brajendra K. Singh | Organic Chemistry | Best Researcher Award

Professor at , Department of Chemistry, University of Delhi, India.

Prof. Brajendra Kumar Singh 🧪📚 is a distinguished chemist and professor at the University of Delhi, specializing in the design, synthesis, and evaluation of bioactive heterocyclic compounds. With a Ph.D. from the University of Delhi (2007) and international research experience at KU Leuven, Belgium, he has contributed significantly to microwave-assisted metal-catalytic reactions. Prof. Singh has 113 research publications, 2 patents, and has delivered 30+ invited lectures globally. A recipient of the Young Scientist Award (DST, India, 2012)🏆, he leads a research team of 11 scholars, shaping the future of organic chemistry. 🌍🔬

Professional Profile

Scopus

Orcid

Suitability for the Researcher Award

Prof. Brajendra Kumar Singh is an outstanding researcher in organic chemistry, with a strong focus on heterocyclic compounds, microwave-assisted catalysis, and nucleoside chemistry 🧪. His contributions to green chemistry, medicinal chemistry, and sustainable synthetic methodologies have significantly impacted the field. With an impressive record of 113 research publications, 2 patents, and multiple invited lectures, he has demonstrated excellence in innovation, mentorship, and interdisciplinary research 🌍.

Education 🎓

  • B.Sc. (2001) 🏫 – University of Delhi, India
  • M.Sc. (2003) 📘 – University of Delhi, India
  • Ph.D. (2007) 🎓 – University of Delhi, India

 

Experience 💼

  • 📍 Erasmus International Visiting Scholar (2005-2007) 🇧🇪 – KU Leuven, Belgium
  • 📍 Postdoctoral Fellow (2007-2009) 🧑‍🔬 – KU Leuven, Belgium
  • 📍 Assistant Professor (2010-2019) 👨‍🏫 – University of Delhi, India
  • 📍 Associate Professor (2019-2022) 🔬 – University of Delhi, India
  • 📍 Professor (2022-Present) 🏛️ – University of Delhi, India🎤

 

Professional Development 🚀📖

Prof. Brajendra Kumar Singh has made remarkable contributions to organic chemistry 🧪 through his expertise in heterocyclic compound synthesis and microwave-assisted metal-catalytic reactions ⚛️. He has authored 113 research papers 📄, secured 2 patents 🏅, and delivered 30+ invited lectures globally 🎤. As a research leader, he supervises 11 scholars 👨‍🎓👩‍🎓 and manages projects funded by Delhi University, DRDO, and DST 💰. His international collaborations span Belgium, USA, Italy, Germany, and more 🌍. A recipient of the Young Scientist Award (DST, 2012) 🏆, he continues to innovate and inspire in the field of organic synthesis.

Research Focus 🔍🤖

Prof. Brajendra Kumar Singh specializes in organic chemistry 🧪, focusing on the design, synthesis, and evaluation of bioactive heterocyclic compounds ⚛️. His research explores microwave-assisted metal-catalyzed reactions 🔥, developing eco-friendly and efficient synthetic methodologies 🌱. He works on drug discovery 💊, targeting novel molecules for pharmaceutical applications. His projects, funded by Delhi University, DRDO, and DST 💰, drive innovation in synthetic chemistry. With international collaborations 🌍, he advances research in pericyclic reactions, photochemistry, and organocatalysis 🔬. His groundbreaking work contributes to green chemistry 🌿 and the development of new therapeutic agents 🏥.

Awards & Honors 🏅🎖️

  • Young Scientist Award (2012) 🎖️ – Department of Science & Technology (DST), New Delhi, India
  • Erasmus International Scholar (2005-2007) 🌍 – KU Leuven, Belgium
  • Postdoctoral Fellowship (2007-2009) 🧑‍🔬 – KU Leuven, Belgium
  • Invited Speaker (30+ times) 🎤 – National & International Conferences
  • Research Grants & Project Funding 💰 – Delhi University, DRDO, DST

 

Publication Top Notes:
  • “A review on chitosan and chitosan-based bionanocomposites” (2025) 📖International Journal of Biological Macromolecules 🧪 | Cited by: 0
  • “Design and synthesis of a carbohydrate-derived chemosensor for Ni(II) detection” (2025) 🔬Carbohydrate Research ⚛️ | Cited by: 0
  • “Selective functionalization of 2-phenyl-4H-benzo[d][1,3]oxazin-4-ones” (2025) 🏺Tetrahedron 🧪 | Cited by: 0
  • “Synthesis of base-modified fluorescent furo[3,2-c]coumarin nucleosides” (2025) 💡Journal of Molecular Structure 🔍 | Cited by: 1
  • “Microwave-assisted Pd-catalyzed cross-coupling of aryl alkyl selenides” (2025) 🔥Organic and Biomolecular Chemistry 🧑‍🔬 | Cited by: 0
  • “Microwave-assisted synthesis of fluorescent 1,4-dihydropyridine nucleosides” (2024) 🧬RSC Advances 🌿 | Cited by: 0
  • “Recent Advances in the Synthesis of Acyclic Nucleosides” (2024) 🏥[No source available] 💊 | Cited by: 0
  • “Perylene bisimides – Advanced synthesis and photoelectric applications” (2024) 🌞Dyes and Pigments 🏗️ | Cited by: 0
  • “Nickel-Catalyzed Cross-Coupling of Aryl Alkyl Selenides” (2024) ⚙️Advanced Synthesis and Catalysis 🏆 | Cited by: 1

📌 Conclusion:

With his groundbreaking research, global impact, and leadership in organic chemistry, Prof. Brajendra Kumar Singh is a highly deserving candidate for the Best Researcher Award. His commitment to scientific advancements, innovation in chemical synthesis, and mentorship of future researchers make him an ideal recipient of this prestigious recognition. 🏆🔬